
SSH, SSL, and IPsec: wtf?

Eric Rescorla

RTFM, Inc.

ekr@rtfm.com

Eric Rescorla SSH, SSL, and IPsec 1



What are we trying to accomplish?

• Alice, Bob want to talk to each other

• But they’re worried about attack

– How do you know you’re talking to the right person?

– How do you know people can’t listen to your conversation

– How do you know people can’t change your conversation?

• We want to build a system that protects against these attacks

Eric Rescorla SSH, SSL, and IPsec 2



Terminology Dump 1: Attacker Capabilities

Passive Attacker doesn’t send anything.

Active Attacker is allowed to send traffic.

On-path Attacker is on the communications path between A and B.

• Sees all traffic

• Can seamlessly impersonate either side

Off-path Attacker is not on communications path between A and B

• Can’t see traffic between A and B.

• Can sometimes send traffic as either (subject to address

filtering).

Eric Rescorla SSH, SSL, and IPsec 3



Terminology Dump 2: Security Properties

Confidentiality Information being transmitted is kept secret from

attackers

Data Origin Authentication Receivers can determine the origin of

traffic.

Message Integrity Tampering of traffic can be detected.

Third-party Verifiability A party not involved in the initial

communication can verify what happened. (Often misleadingly

called non-repudiation)

Eric Rescorla SSH, SSL, and IPsec 4



A simple problem: remote authentication

• You’re a Web server

– X connects to you claiming to be Alice

– How can you tell?

• Assumptions:

– All you have is the network traffic

∗ Can send messages to X

∗ Receive X’s response

– Attackers can forge but not view, intercept, or modify traffic

– You have some prior relationship with Alice

Eric Rescorla SSH, SSL, and IPsec 5



Remote authentication: basic ideas

• Alice needs to be able to do something others can’t do

– Generally, compute some function

∗ But why can’t X do that?

• How do we break the symmetry?

– Give Alice more resources

– Give Alice some secret

Eric Rescorla SSH, SSL, and IPsec 6



One-sided authentication with shared secrets

• Assume Alice and Bob share a secret Sab

– Alice needs to prove possession of Sab

– (Assume Alice authenticates Bob some other way)

• Simple approach:

– Bob and Alice both store Sab

– Alice sends Bob Sab

– Bob does memcmp().

Eric Rescorla SSH, SSL, and IPsec 7



Problems with the previous scheme

Snooping. an attacker who is on-path can capture the password and

replay it

Hijacking. an attacker can wait for you to exchange the password and

then take over the connection

One-way authentication. how does Alice authenticate Bob?

Eric Rescorla SSH, SSL, and IPsec 8



Fixing snooping

• Alice doesn’t send Sab over the wire

– Instead she computes some function f

– And sends f(Sab)

• What properties does f need?

1st Preimage Resistant hard to compute Sab from f(Sab)

2nd Preimage Resistant hard to find S0 st f(S0) = f(Sab)

• Luckily, we have such functions

Eric Rescorla SSH, SSL, and IPsec 9



Cryptographic hash functions

• Basic idea: one-way function (also called message digests)

– Take an arbitrary length bit string m and reduce it to 100-200

(b) bits

– H(m) = h

• Hash functions are preimage resistant

– Takes approximately 2b operations to find m given h

• Hash functions are collision resistant

– Takes approximately 2b/2 operations to find m, m0 st.

H(m) = H(m0)

• Popular algorithms: MD5, SHA-1, SHA-256

Eric Rescorla SSH, SSL, and IPsec 10



Challenge-Response

• So, Alice just sends H(Sab), right?

– Wrong

– This becomes the new secret

– So we still have a replay attack problem

• Bob needs to force Alice to compute a new function each time

Alice Bob

Challenge
oo

H(Sab+Challenge)
//

• Challenge needs to be unique for every exchange

– Does not need to be unpredictable

Eric Rescorla SSH, SSL, and IPsec 11



Why mutual authentication?

• We assumed that Alice was talking to Bob

– But how does Alice know that?

– She can’t trust the network

– What if she’s connecting to the attacker

Alice Attacker Bob

Challenge
oo

Challenge
oo

H(Sab+Challenge)
//

H(Sab+Challenge)
//

Attack Commands
//

• Alice has just logged in for the attacker

– He can issue any commands he wants (oops!)

Eric Rescorla SSH, SSL, and IPsec 12



Adding mutual authentication

• We already know how to authenticate Alice

– Now we need to authenticate Bob

– Just reverse the procedure

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

• Each side needs to control its own challenges

– Otherwise we have replay issues again

Eric Rescorla SSH, SSL, and IPsec 13



Hijacking

• This protocol still has a hijacking problem

Alice Attacker Bob

Challenge1
oo

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge1)
//

Challenge2

H(Sab+Challenge1+Challenge1)
//

H(Sab+Challenge2+Challenge1)
oo

H(Sab+Challenge2+Challenge1)
oo

Attack commands
//

• We need to authenticate the data

– Not just the initial handshake

Eric Rescorla SSH, SSL, and IPsec 14

2

2



Authenticating data

• Break the data into records

– Attach a message authentication code (MAC) to each record

– Receiver verifies MACs on record

Length Data MAC

Eric Rescorla SSH, SSL, and IPsec 15



A message authentication code? Dude, wait, what?

• What’s a MAC?

– A one-way function of the key and some data

– F (k, data) = x

∗ x is short (80-200 bits)

∗ Hard to compute x without k

∗ Hard to compute data even with k, x

• This sounds kinda like a hash

– MACs are usually built from hashes

∗ World’s simplest MAC: H(k + data) (this has problems)

• Popular MACs: HMAC

Eric Rescorla SSH, SSL, and IPsec 16



Where does the key come from?

• We want a key that’s unique to this connection

– And tied to both sides

– Get it from the challenge-response handshake

• First attempt: K = H(Sab + Challenge1 + Challenge2)

– But now the key is the same in both directions

– And the same as the challenge response!

– Allows reflection attacks

• Second attempt

– Ka!b = H(Sab + ”AB” + Challenge1 + Challenge2)

– Kb!a = H(Sab + ”BA” + Challenge1 + Challenge2)

Eric Rescorla SSH, SSL, and IPsec 17



World’s simplest security protocol

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

Message1,MAC
//

Message2,MAC
oo

• Each side knows who the other is

• All messages are authenticated

– But they’re not confidential

– So don’t send any secret information

Eric Rescorla SSH, SSL, and IPsec 18



Symmetric Encryption

• We have two functions E,D st.

– E(k, P laintext) = Ciphertext

– D(k, Ciphertext) = Plaintext

– These are easy to compute

– Either function is hard to compute without k

• Popular encryption algorithms: DES, 3DES, AES, RC4

Eric Rescorla SSH, SSL, and IPsec 19



A (mostly) complete channel security protocol

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Each side knows who the other is

• All messages are authenticated

• All messages are confidential

Eric Rescorla SSH, SSL, and IPsec 20

Rather than encrypting the MAC, we should encrypt the message and MAC the ciphertext



So, we’re done, right?

• How do Alice and Bob get Sab?

• Some out of band channel

– Send a letter—do you trust USPS?

– Meet in person—airplane tickets are expensive

– Guys with briefcases handcuffed to their wrists?

• All of these are pretty inconvenient

– We can do better

Eric Rescorla SSH, SSL, and IPsec 21



Diffie-Hellman Key Agreement

• Each side has two keys (“public” and “private”)

– You publish the public key but the private key is secret

– F (Ka
pub, K

b
priv) = F (Kb

pub, K
a
pub) = ZZ

– You need at least one private key to compute ZZ

• This is crypto rocket science–but you don’t need to understand

how it works

Eric Rescorla SSH, SSL, and IPsec 22

priv

Not actually true. Diffie–Hellman is not that complicated and you do need to understand how it works!



Using Diffie-Hellman

Alice Bob

Random1,Ka
pub

//

Random2,Kb
pub

oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Each side sends its public key

• The other side combines its private key with the other side’s

public key to compute ZZ

• The traffic keys are generated from ZZ

Eric Rescorla SSH, SSL, and IPsec 23

We need four different keys:                                                                    — Encryption keys Alice -> Bob and Bob -> Alice;                    — MAC keys Alice -> Bob and Bob -> Alice



Man-in-the-middle attack

Alice Attacker Bob

Random1,Ka
pub

//

Random1,KA
pub

//

Random2,KA
pub

oo

Random2,Kb
pub

oo

E(ka→A,(Message1,MAC))
//

E(kA→b,(Message1,MAC))
//

E(kA→a,(Message2,MAC))
oo

E(kb→A,(Message2,MAC))
oo

• Each side thinks it’s talking to the other

– This is what happens when you don’t authenticate

• Alice and Bob need some way to authenticate each other’s public

keys

Eric Rescorla SSH, SSL, and IPsec 24



Digital Signatures

• Remember MACs?

• There’s a public key version of this

– “Sign” with Kpriv

– “Verify” with Kpub

• A signed message can only be generated by someone who has the

private key

• Popular algorithms: RSA, DSA, ECDSA

Eric Rescorla SSH, SSL, and IPsec 25



Public key distribution

• Public key cryptography is one piece of the puzzle

– But only one piece

• I can verify a signature came from a given key

– But where do I get that key from?

• We could have a global directory

– Obvious scaling problems here

• What if I could give you a credential vouching for your public key?

Eric Rescorla SSH, SSL, and IPsec 26



Certificates

• Digital signatures let us do exactly that

• Create a central certificate authority (CA)

– Alice proves her identity to the CA

– The CA gives her a signed message “Alice’s public key is X” (a

certificate)

• Anyone can verify this certificate

– As long as they have the public key of the CA

– This key is compiled into the software

• Popular CAs: VeriSign, Thawte, GoDaddy

Eric Rescorla SSH, SSL, and IPsec 27

LetsEncrypt — free, easy to use



Diffie-Hellman with certificates

Alice Bob

Random1,Certa

//

Random2,Certb

oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Certificates contain DH public keys

• Each side can authenticate the other

– This is actually a bug

– Certificates are too inconvenient for users to get

– And the user doesn’t always need to be authenticated

– Or is authenticated some other way

Eric Rescorla SSH, SSL, and IPsec 28



One-way authentication with PKC

• One side (server) has a certificate

• The other side (client) makes up a random key pair

Client Server

Random1,Certs

oo

Random2,Kc
pub

//

E(kc→s,(Credit card #,MAC))
//

E(ks→c,(OK,MAC))
oo

• This authenticates the server but not the client

• We can do a similar trick with RSA

– Encrypt with public key, decrypt with private key

• This is the main operational mode for SSL/TLS

Eric Rescorla SSH, SSL, and IPsec 29

Well, it was. Now, we're moving toward forward secrecy (next slide)



Perfect Forward Secrecy

• What happens if one side’s computer is compromised?

– Attacker gets private key

– Can decode all communications by that side

• Fix: have certificates with signature keys (RSA, DSA)

– Generate a random DH key for each handshake

– Sign it with your signature key

• Compromise of private key doesn’t affect past traffic

– But you can MITM future connections

• This is the main operational mode for IPsec

Eric Rescorla SSH, SSL, and IPsec 30

and TLS 1.3



Algorithm negotiation

• There are a lot of choices here

– Who authenticates,

– Public key algorithm

– Digest algorithm

– Encryption algorithm

• Each make sense in some scenarios

– A good protocol is adaptable

• This means some kind of negotiation

– This needs to be protected to prevent downgrade attacks

Eric Rescorla SSH, SSL, and IPsec 31



A complete channel security protocol

Alice Bob

Random1,Algorithms
//

Random2,Algorithm,Certb

oo

Certa,MAC(ZZ,HandshakeMsgs)
//

MAC(ZZ,HandshakeMsgs)
oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

Eric Rescorla SSH, SSL, and IPsec 32

Again, we should MAC the ciphertext rather than encrypting the MAC



Secure Sockets Layer (SSL)

• Originally a Netscape proprietary protocol

• Target application: e-commerce

– What people thought the Web was for in 1994

– Objective: send my credit card to Amazon securely

• Basic principles (ca. 1994)

– The server is authenticated (via certificate)

– The client is unauthenticated

– This should be easy to plug in to both sides

Eric Rescorla SSH, SSL, and IPsec 33



SSL/TLS History (1)

• SSLv1 (never released)

– Designed by Kipp Hickman

– Severe security flaws (immediately obvious to anyone who

knew crypto)

• SSLv2

– Hickman again (after being beaten up by others)

– Modest security flaws (truncation attacks, downgrade)

– Very widely deployed

• SSLv3

– Freier, Karlton, Kocher

– Fixes the above problems

Eric Rescorla SSH, SSL, and IPsec 34



SSL/TLS History (2)

• Transport Layer Security (TLS) 1.0 (RFC 2246)

– First standardized version of SSL

– Modest improvements to key derivation

• TLS 1.1 (RFC 4346)

– Fixes for modest security flaws

• TLS 1.2 (RFC 5246)

– Flexibility for hash functions (thanks Dr. Wang!)

• As you can see, this is in maintenance mode

Eric Rescorla SSH, SSL, and IPsec 35

TLS 1.3 is in progress, major changes:                   — No RSA key exchange (for forward secrecy);       — authenticated encryption modes;                 — 0 RTT handshakes



HTTP over SSL (HTTPS)

Client Server

TCP SY N
//

TCP SY N�ACK
oo

TCP ACK
//

oo
SSL Handshake

//

HTTP Request
//

HTTP Response
oo

• The client knows that the server expects HTTPS

– It’s in the URL https://www.example.com/

– It’s on a separate port

• The server’s certificate has its domain name (www.example.com)

Eric Rescorla SSH, SSL, and IPsec 36



SSL Session Resumption

• Asymmetric (private key) operations are expensive

– And HTTPS tends to involve a lot of SSL/TCP connections

• Caching pays off here

– Each handshake establishes a session

– Clients can resume the session with the same keying material

– Thus skipping the key exchange

Eric Rescorla SSH, SSL, and IPsec 37



Upward Negotiation

• What if the client and server don’t know each other’s capabilities

– Would be nice to discover them

– And automatically upgrade to TLS

• Example: SMTP

Client Server

HELO + TLS
//

OK do TLS
oo

oo
SSL Handshake

//

oo
SMTP transaction

//

• Of course, this allows downgrade attacks

Eric Rescorla SSH, SSL, and IPsec 38



DoS Attacks on SSL/TLS

• Resource consumption

– Public key operations are expensive

∗ Client can force the server to do a lot of them

∗ But not blindly (TCP handshake)

– State on the server side

• SSL/TLS connection runs over TCP

– TCP connections are easy to DoS

– SSL/TLS can’t protect you from this

– Needs to be at a lower layer

Eric Rescorla SSH, SSL, and IPsec 39



Datagram TLS (RFC 4347)

• TLS requires a reliable channel

– The handshake is in sequence

– The data records depend on each other

– In practice this means TCP

• What about unreliable channels?

– DTLS is a slight modification of TLS

– Reliability for the handshake

– Record independence

• More DoS resistance (more on this later)

Eric Rescorla SSH, SSL, and IPsec 40



Secure Shell (SSH)

• Originally designed by Tatu Ylonen

– Replacement for rsh

– Now the standard tool for secure remote login

– A lot of authentication mechanisms

• Other features

– Remote X

– File transfer

– Port forwarding

• Original version was seriously broken

– Later standardized versions are better

– Transport protocol looks a lot like TLS

Eric Rescorla SSH, SSL, and IPsec 41



SSH leap of faith authentication

• No certificates–server just has a raw public key

– The server provides the key when the client connects

– The client stores the server’s key on first connection

– Any changes in the key are an error

• The key can be authenticated out of band

– The server operator tells the client the key fingerprint (hash)

over the phone

– But only the most paranoid people do this

• This was considered insanity at the time

– Now it’s considered clever

Eric Rescorla SSH, SSL, and IPsec 42



SSL Key Exchange Protocol

Client Server

Protocol=SSH�2.0...
oo

Protocol=SSL�2.0...
//

KeyExInit(algorithms...)
oo

KeyExInit(algorithms....)
//

DH(group size)
//

p,g
oo

DHc
pub

//

DHs
pub,Sign(Ks

priv,DHs
pub)

oo

Eric Rescorla SSH, SSL, and IPsec 43



SSH Client Authentication

• Server is authenticated first

• Client is then authenticated

– Raw password

– Challenge-response

– Public key

– GSS-API

– Kerberos

• Mechanisms are negotiated

Eric Rescorla SSH, SSL, and IPsec 44



SSL Client Authentication Protocol

Client Server

Auth: None
//

Auth: publickey,password,...
oo

publickey=XXX
//

No
oo

publickey=Y Y Y
//

No
oo

signature
//

OK
oo

Eric Rescorla SSH, SSL, and IPsec 45

H

Yes



Port Forwarding

• SSH provides a port forwarding feature

• Example: X11 remote

X

Server

X

Client

SSH

Client

SSH

Server

localhost:6000

localhost:XXXX

• SSH server does setenv DISPLAY localhost:XXXX

• Apps just automatically work

Eric Rescorla SSH, SSL, and IPsec 46



Secure Remote Shell

• SSH is backward compatible with rsh

– So other applications can be securely remoted

– Even without port forwarding

• Examples

– CVS

– rsync

– dump/restore

• Apps don’t need security, just remote access

Eric Rescorla SSH, SSL, and IPsec 47



IPsec: IP Security

• Basic idea: secure IP datagrams

– Instead of at application layer like TLS or SSH

• Why was this considered a good idea?

– Secure all traffic, not just TCP/UDP

– Automatically secure applications

∗ Without any change to the application

– Built-in-firewalling/access control

Eric Rescorla SSH, SSL, and IPsec 48



IPsec history

• Work started in 1992-1993

• General agreement on packet formats early on

– Though confusion about integrity vs. authentication

• Key agreement was very controversial

– Design issues

– IPR issues

• First “proposed standards” published in 1998

– Mishmash of IKE, ISAKMP, OAKLEY

• Complaints about clarity and complexity

– IKEv2 approved in 2005

Eric Rescorla SSH, SSL, and IPsec 49



IPsec architecture

Kernel Space

User Space

Transport

TCP/UDP

IP

IPsec

HTTP SMTP ... IKE

SPD

SAD

Eric Rescorla SSH, SSL, and IPsec 50



IPsec Packet Formats

IP

Hdr

IPsec

Hdr

TCP

Hdr
Data Transport Mode

IP

Hdr

IPsec

Hdr

IP

Hdr

TCP

Hdr
Data Tunnel Mode

Eric Rescorla SSH, SSL, and IPsec 51



IKE “Anonymity”

• The handshakes we’ve seen leak your identity to passive attackers

– Arguably this is bad

– IKE tries to stop this

Initiator Responder

DHi
pub

//

DHr
pub

oo

{CERT i}
//

{CERT r}
oo

• An active attacker can get the initiator’s identity

Eric Rescorla SSH, SSL, and IPsec 52



IKE DoS prevention

• Objective: prevent blind DoS attacks

Initiator Responder

DHi
pub

//

Ticket
oo

DHi
pub,T icket

//

DHr
pub

oo

{CERT i}
//

{CERT r}
oo

• Ticket has to be stateless

Eric Rescorla SSH, SSL, and IPsec 53



IPsec Status

• Many implementations

– Windows, OS/X, Linux, FreeBSD, IOS...

• Nearly all deployments are in VPN settings

• And peopel are cutting over to SSL/VPN

– Semi-manual configuration

• This is not what was intended

• Widely regarded as a semi-failure

Eric Rescorla SSH, SSL, and IPsec 54



What was wrong with IPsec?

• Complexity

• Time to market

• Wrong design goals

• Hard to use

Eric Rescorla SSH, SSL, and IPsec 55



Final thoughts

• All of these protocols look strikingly alike

– To some extent they were designed by the same people

– But also there appear to only be so many ways to do this

• All have gone through multiple revisions

– This is really hard to get right

– Even when you ave experienced people

– Don’t invent your own

• Usage models matter

– SSL/TLS and SSH got this right

– IPsec did not

Eric Rescorla SSH, SSL, and IPsec 56


