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What are we trying to accomplish?

• Alice, Bob want to talk to each other

• But they’re worried about attack

– How do you know you’re talking to the right person?

– How do you know people can’t listen to your conversation

– How do you know people can’t change your conversation?

• We want to build a system that protects against these attacks
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Terminology Dump 1: Attacker Capabilities

Passive Attacker doesn’t send anything.

Active Attacker is allowed to send traffic.

On-path Attacker is on the communications path between A and B.

• Sees all traffic

• Can seamlessly impersonate either side

Off-path Attacker is not on communications path between A and B

• Can’t see traffic between A and B.

• Can sometimes send traffic as either (subject to address

filtering).
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Terminology Dump 2: Security Properties

Confidentiality Information being transmitted is kept secret from

attackers

Data Origin Authentication Receivers can determine the origin of

traffic.

Message Integrity Tampering of traffic can be detected.

Third-party Verifiability A party not involved in the initial

communication can verify what happened. (Often misleadingly

called non-repudiation)
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A simple problem: remote authentication

• You’re a Web server

– X connects to you claiming to be Alice

– How can you tell?

• Assumptions:

– All you have is the network traffic

∗ Can send messages to X

∗ Receive X’s response

– Attackers can forge but not view, intercept, or modify traffic

– You have some prior relationship with Alice
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Remote authentication: basic ideas

• Alice needs to be able to do something others can’t do

– Generally, compute some function

∗ But why can’t X do that?

• How do we break the symmetry?

– Give Alice more resources

– Give Alice some secret
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One-sided authentication with shared secrets

• Assume Alice and Bob share a secret Sab

– Alice needs to prove possession of Sab

– (Assume Alice authenticates Bob some other way)

• Simple approach:

– Bob and Alice both store Sab

– Alice sends Bob Sab

– Bob does memcmp().
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Problems with the previous scheme

Snooping. an attacker who is on-path can capture the password and

replay it

Hijacking. an attacker can wait for you to exchange the password and

then take over the connection

One-way authentication. how does Alice authenticate Bob?
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Fixing snooping

• Alice doesn’t send Sab over the wire

– Instead she computes some function f

– And sends f(Sab)

• What properties does f need?

1st Preimage Resistant hard to compute Sab from f(Sab)

2nd Preimage Resistant hard to find S0 st f(S0) = f(Sab)

• Luckily, we have such functions
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Cryptographic hash functions

• Basic idea: one-way function (also called message digests)

– Take an arbitrary length bit string m and reduce it to 100-200

(b) bits

– H(m) = h

• Hash functions are preimage resistant

– Takes approximately 2b operations to find m given h

• Hash functions are collision resistant

– Takes approximately 2b/2 operations to find m, m0 st.

H(m) = H(m0)

• Popular algorithms: MD5, SHA-1, SHA-256
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Challenge-Response

• So, Alice just sends H(Sab), right?

– Wrong

– This becomes the new secret

– So we still have a replay attack problem

• Bob needs to force Alice to compute a new function each time

Alice Bob

Challenge
oo

H(Sab+Challenge)
//

• Challenge needs to be unique for every exchange

– Does not need to be unpredictable
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Why mutual authentication?

• We assumed that Alice was talking to Bob

– But how does Alice know that?

– She can’t trust the network

– What if she’s connecting to the attacker

Alice Attacker Bob

Challenge
oo

Challenge
oo

H(Sab+Challenge)
//

H(Sab+Challenge)
//

Attack Commands
//

• Alice has just logged in for the attacker

– He can issue any commands he wants (oops!)
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Adding mutual authentication

• We already know how to authenticate Alice

– Now we need to authenticate Bob

– Just reverse the procedure

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

• Each side needs to control its own challenges

– Otherwise we have replay issues again
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Hijacking

• This protocol still has a hijacking problem

Alice Attacker Bob

Challenge1
oo

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge1)
//

Challenge2

H(Sab+Challenge1+Challenge1)
//

H(Sab+Challenge2+Challenge1)
oo

H(Sab+Challenge2+Challenge1)
oo

Attack commands
//

• We need to authenticate the data

– Not just the initial handshake
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Authenticating data

• Break the data into records

– Attach a message authentication code (MAC) to each record

– Receiver verifies MACs on record

Length Data MAC
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A message authentication code? Dude, wait, what?

• What’s a MAC?

– A one-way function of the key and some data

– F (k, data) = x

∗ x is short (80-200 bits)

∗ Hard to compute x without k

∗ Hard to compute data even with k, x

• This sounds kinda like a hash

– MACs are usually built from hashes

∗ World’s simplest MAC: H(k + data) (this has problems)

• Popular MACs: HMAC
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Where does the key come from?

• We want a key that’s unique to this connection

– And tied to both sides

– Get it from the challenge-response handshake

• First attempt: K = H(Sab + Challenge1 + Challenge2)

– But now the key is the same in both directions

– And the same as the challenge response!

– Allows reflection attacks

• Second attempt

– Ka!b = H(Sab + ”AB” + Challenge1 + Challenge2)

– Kb!a = H(Sab + ”BA” + Challenge1 + Challenge2)
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World’s simplest security protocol

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

Message1,MAC
//

Message2,MAC
oo

• Each side knows who the other is

• All messages are authenticated

– But they’re not confidential

– So don’t send any secret information
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Symmetric Encryption

• We have two functions E,D st.

– E(k, P laintext) = Ciphertext

– D(k, Ciphertext) = Plaintext

– These are easy to compute

– Either function is hard to compute without k

• Popular encryption algorithms: DES, 3DES, AES, RC4
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A (mostly) complete channel security protocol

Alice Bob

Challenge1
oo

Challenge2

H(Sab+Challenge1+Challenge2)
//

H(Sab+Challenge2+Challenge1)
oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Each side knows who the other is

• All messages are authenticated

• All messages are confidential
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So, we’re done, right?

• How do Alice and Bob get Sab?

• Some out of band channel

– Send a letter—do you trust USPS?

– Meet in person—airplane tickets are expensive

– Guys with briefcases handcuffed to their wrists?

• All of these are pretty inconvenient

– We can do better
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Diffie-Hellman Key Agreement

• Each side has two keys (“public” and “private”)

– You publish the public key but the private key is secret

– F (Ka
pub, K

b
priv) = F (Kb

pub, K
a
pub) = ZZ

– You need at least one private key to compute ZZ

• This is crypto rocket science–but you don’t need to understand

how it works
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Using Diffie-Hellman

Alice Bob

Random1,Ka
pub

//

Random2,Kb
pub

oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Each side sends its public key

• The other side combines its private key with the other side’s

public key to compute ZZ

• The traffic keys are generated from ZZ
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Man-in-the-middle attack

Alice Attacker Bob

Random1,Ka
pub

//

Random1,KA
pub

//

Random2,KA
pub

oo

Random2,Kb
pub

oo

E(ka→A,(Message1,MAC))
//

E(kA→b,(Message1,MAC))
//

E(kA→a,(Message2,MAC))
oo

E(kb→A,(Message2,MAC))
oo

• Each side thinks it’s talking to the other

– This is what happens when you don’t authenticate

• Alice and Bob need some way to authenticate each other’s public

keys
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Digital Signatures

• Remember MACs?

• There’s a public key version of this

– “Sign” with Kpriv

– “Verify” with Kpub

• A signed message can only be generated by someone who has the

private key

• Popular algorithms: RSA, DSA, ECDSA
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Public key distribution

• Public key cryptography is one piece of the puzzle

– But only one piece

• I can verify a signature came from a given key

– But where do I get that key from?

• We could have a global directory

– Obvious scaling problems here

• What if I could give you a credential vouching for your public key?
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Certificates

• Digital signatures let us do exactly that

• Create a central certificate authority (CA)

– Alice proves her identity to the CA

– The CA gives her a signed message “Alice’s public key is X” (a

certificate)

• Anyone can verify this certificate

– As long as they have the public key of the CA

– This key is compiled into the software

• Popular CAs: VeriSign, Thawte, GoDaddy
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Diffie-Hellman with certificates

Alice Bob

Random1,Certa

//

Random2,Certb

oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo

• Certificates contain DH public keys

• Each side can authenticate the other

– This is actually a bug

– Certificates are too inconvenient for users to get

– And the user doesn’t always need to be authenticated

– Or is authenticated some other way

Eric Rescorla SSH, SSL, and IPsec 28



One-way authentication with PKC

• One side (server) has a certificate

• The other side (client) makes up a random key pair

Client Server

Random1,Certs

oo

Random2,Kc
pub

//

E(kc→s,(Credit card #,MAC))
//

E(ks→c,(OK,MAC))
oo

• This authenticates the server but not the client

• We can do a similar trick with RSA

– Encrypt with public key, decrypt with private key

• This is the main operational mode for SSL/TLS
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Perfect Forward Secrecy

• What happens if one side’s computer is compromised?

– Attacker gets private key

– Can decode all communications by that side

• Fix: have certificates with signature keys (RSA, DSA)

– Generate a random DH key for each handshake

– Sign it with your signature key

• Compromise of private key doesn’t affect past traffic

– But you can MITM future connections

• This is the main operational mode for IPsec
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Algorithm negotiation

• There are a lot of choices here

– Who authenticates,

– Public key algorithm

– Digest algorithm

– Encryption algorithm

• Each make sense in some scenarios

– A good protocol is adaptable

• This means some kind of negotiation

– This needs to be protected to prevent downgrade attacks
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A complete channel security protocol

Alice Bob

Random1,Algorithms
//

Random2,Algorithm,Certb

oo

Certa,MAC(ZZ,HandshakeMsgs)
//

MAC(ZZ,HandshakeMsgs)
oo

E(ka→b,(Message1,MAC))
//

E(kb→a,(Message2,MAC))
oo
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Secure Sockets Layer (SSL)

• Originally a Netscape proprietary protocol

• Target application: e-commerce

– What people thought the Web was for in 1994

– Objective: send my credit card to Amazon securely

• Basic principles (ca. 1994)

– The server is authenticated (via certificate)

– The client is unauthenticated

– This should be easy to plug in to both sides
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SSL/TLS History (1)

• SSLv1 (never released)

– Designed by Kipp Hickman

– Severe security flaws (immediately obvious to anyone who

knew crypto)

• SSLv2

– Hickman again (after being beaten up by others)

– Modest security flaws (truncation attacks, downgrade)

– Very widely deployed

• SSLv3

– Freier, Karlton, Kocher

– Fixes the above problems
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SSL/TLS History (2)

• Transport Layer Security (TLS) 1.0 (RFC 2246)

– First standardized version of SSL

– Modest improvements to key derivation

• TLS 1.1 (RFC 4346)

– Fixes for modest security flaws

• TLS 1.2 (RFC 5246)

– Flexibility for hash functions (thanks Dr. Wang!)

• As you can see, this is in maintenance mode
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HTTP over SSL (HTTPS)

Client Server

TCP SY N
//

TCP SY N�ACK
oo

TCP ACK
//

oo
SSL Handshake

//

HTTP Request
//

HTTP Response
oo

• The client knows that the server expects HTTPS

– It’s in the URL https://www.example.com/

– It’s on a separate port

• The server’s certificate has its domain name (www.example.com)

Eric Rescorla SSH, SSL, and IPsec 36



SSL Session Resumption

• Asymmetric (private key) operations are expensive

– And HTTPS tends to involve a lot of SSL/TCP connections

• Caching pays off here

– Each handshake establishes a session

– Clients can resume the session with the same keying material

– Thus skipping the key exchange
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Upward Negotiation

• What if the client and server don’t know each other’s capabilities

– Would be nice to discover them

– And automatically upgrade to TLS

• Example: SMTP

Client Server

HELO + TLS
//

OK do TLS
oo

oo
SSL Handshake

//

oo
SMTP transaction

//

• Of course, this allows downgrade attacks
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DoS Attacks on SSL/TLS

• Resource consumption

– Public key operations are expensive

∗ Client can force the server to do a lot of them

∗ But not blindly (TCP handshake)

– State on the server side

• SSL/TLS connection runs over TCP

– TCP connections are easy to DoS

– SSL/TLS can’t protect you from this

– Needs to be at a lower layer
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Datagram TLS (RFC 4347)

• TLS requires a reliable channel

– The handshake is in sequence

– The data records depend on each other

– In practice this means TCP

• What about unreliable channels?

– DTLS is a slight modification of TLS

– Reliability for the handshake

– Record independence

• More DoS resistance (more on this later)
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Secure Shell (SSH)

• Originally designed by Tatu Ylonen

– Replacement for rsh

– Now the standard tool for secure remote login

– A lot of authentication mechanisms

• Other features

– Remote X

– File transfer

– Port forwarding

• Original version was seriously broken

– Later standardized versions are better

– Transport protocol looks a lot like TLS
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SSH leap of faith authentication

• No certificates–server just has a raw public key

– The server provides the key when the client connects

– The client stores the server’s key on first connection

– Any changes in the key are an error

• The key can be authenticated out of band

– The server operator tells the client the key fingerprint (hash)

over the phone

– But only the most paranoid people do this

• This was considered insanity at the time

– Now it’s considered clever
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SSL Key Exchange Protocol

Client Server

Protocol=SSH�2.0...
oo

Protocol=SSL�2.0...
//

KeyExInit(algorithms...)
oo

KeyExInit(algorithms....)
//

DH(group size)
//

p,g
oo

DHc
pub

//

DHs
pub,Sign(Ks

priv,DHs
pub)

oo
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SSH Client Authentication

• Server is authenticated first

• Client is then authenticated

– Raw password

– Challenge-response

– Public key

– GSS-API

– Kerberos

• Mechanisms are negotiated
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SSL Client Authentication Protocol

Client Server

Auth: None
//

Auth: publickey,password,...
oo

publickey=XXX
//

No
oo

publickey=Y Y Y
//

No
oo

signature
//

OK
oo

Eric Rescorla SSH, SSL, and IPsec 45

H

Yes



Port Forwarding

• SSH provides a port forwarding feature

• Example: X11 remote

X

Server

X

Client

SSH

Client

SSH

Server

localhost:6000

localhost:XXXX

• SSH server does setenv DISPLAY localhost:XXXX

• Apps just automatically work
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Secure Remote Shell

• SSH is backward compatible with rsh

– So other applications can be securely remoted

– Even without port forwarding

• Examples

– CVS

– rsync

– dump/restore

• Apps don’t need security, just remote access
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IPsec: IP Security

• Basic idea: secure IP datagrams

– Instead of at application layer like TLS or SSH

• Why was this considered a good idea?

– Secure all traffic, not just TCP/UDP

– Automatically secure applications

∗ Without any change to the application

– Built-in-firewalling/access control

Eric Rescorla SSH, SSL, and IPsec 48



IPsec history

• Work started in 1992-1993

• General agreement on packet formats early on

– Though confusion about integrity vs. authentication

• Key agreement was very controversial

– Design issues

– IPR issues

• First “proposed standards” published in 1998

– Mishmash of IKE, ISAKMP, OAKLEY

• Complaints about clarity and complexity

– IKEv2 approved in 2005
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IPsec architecture

Kernel Space

User Space

Transport

TCP/UDP

IP

IPsec

HTTP SMTP ... IKE

SPD

SAD
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IPsec Packet Formats

IP

Hdr

IPsec

Hdr

TCP

Hdr
Data Transport Mode

IP

Hdr

IPsec

Hdr

IP

Hdr

TCP

Hdr
Data Tunnel Mode
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IKE “Anonymity”

• The handshakes we’ve seen leak your identity to passive attackers

– Arguably this is bad

– IKE tries to stop this

Initiator Responder

DHi
pub

//

DHr
pub

oo

{CERT i}
//

{CERT r}
oo

• An active attacker can get the initiator’s identity
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IKE DoS prevention

• Objective: prevent blind DoS attacks

Initiator Responder

DHi
pub

//

Ticket
oo

DHi
pub,T icket

//

DHr
pub

oo

{CERT i}
//

{CERT r}
oo

• Ticket has to be stateless
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IPsec Status

• Many implementations

– Windows, OS/X, Linux, FreeBSD, IOS...

• Nearly all deployments are in VPN settings

• And peopel are cutting over to SSL/VPN

– Semi-manual configuration

• This is not what was intended

• Widely regarded as a semi-failure
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What was wrong with IPsec?

• Complexity

• Time to market

• Wrong design goals

• Hard to use
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Final thoughts

• All of these protocols look strikingly alike

– To some extent they were designed by the same people

– But also there appear to only be so many ways to do this

• All have gone through multiple revisions

– This is really hard to get right

– Even when you ave experienced people

– Don’t invent your own

• Usage models matter

– SSL/TLS and SSH got this right

– IPsec did not
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