
Lecture	20 – Public	key	Crypto

Stephen	Checkoway

University	of	Illinois at	Chicago

CS	487	– Fall	2017

Slides	from	Miller	and	Bailey’s	ECE	422

Review:		Integrity

Problem: Sending	a	message	over	an	untrusted	channel	without	being	changed

Provably-secure	solution: Random	function

Practical	solution:	

Pseudorandom	function (PRF)	

Input:	 arbitrary-length	k

Output:	 fixed-length	value

Secure	if	practically	indistinguishable	from	a	random	function,	unless	know	k

Real-world	use: Message	authentication	codes (MACs)	built	on	cryptographic	
hash	functions	

Popular	example:	HMAC-SHA256k(m)

e.g.	“Attack	at	dawn”,	628369867…

m,	v	:= fk(m)
Bob

m',	v’	=? fk(m’)
Alice Mallory

k k

Review:		Confidentiality

Problem: Sending	message	in	the	presence	of	an	eavesdropper without	
revealing	it

Provably-secure	solution: One-time	pad

Practical	solution:	

Pseudorandom	generator	(PRG)

Input: fixed-length	k
Output: arbitrary-length	stream

Secure	if	practically	indistinguishable	from	a	random	stream,	unless	know	k

Real-world	use: Stream	ciphers (can’t	reuse	k)	

Popular	example:	AES-128 +	CTR	mode

Block	ciphers (need	padding/IV)	Popular	example:	AES-128 +	CBC	mode

c	:=	Ek(p)

Bob

p :=	Dk(c)

Alicek k

Eve

c

Common	theme:		Key

Requirements
• Must	be	known	by	both	Alice	and	Bob
• Must	be	unknown	by	anyone	else
• Must	be	infeasible	to	guess

We’d	like	Alice	and	Bob	to	agree	on	a	key	that	satisfies	those	
properties	by	sending	public	messages	to	each	other

Key	Exchange

Issue:		How	do	we	get	a	shared	key?

BobAlice

Eve
No shared secret (yet!)

Amazing	fact:

Alice	and	Bob	can	have	a	public conversation	to	derive	a	shared	key!	

Diffie-Hellman (D-H)	key	exchange

1976:	Whit	Diffie,	Marty	Hellman,	improving	partial	solution	from	Ralph	Merkle

(earlier,	in	secret,	by	Malcolm	Williamson	of	UK’s	GCHQ)

Relies	on	a	mathematical	hardness	assumption	called	discrete	log	problem

(a	problem	believed	to	be	hard)

Group	Theory	Basics

gx

A	Schnorr group	G	is	a	subset	of	numbers,	under	

multiplication,	modulo a	prime	p.				(a	“safe	prime”)

- We	can	check	if	a	number	x is	an	element	of	the	group

- If	x and	y are	in	the	group,	then	x*y is	in	the	group	too

(x*ymeans	x	times	ymod	p)

- g is	a	generator of	the	group	if	every	element	of	the	

group	can	be	written	as	gx for	some	exponent	x.

Schnorr groups	

Generator, an

element of the

group

Exponent, 0 <= x < (p - 1)/2

A	class	of	mathematical	objects	(it	generalizes	“numbers	mod	p”)

Definition:	A	group	(G,*)	is	a	set	of	elements	G,	and	a	binary	

operation	*

- (Closed):		for	any	x,	y∈ G,	we	know x*y∈ G

- (Identity):	we	know	the	identity	e	in	G

for	any	x∈ G,				we	have	e*x	=	x =	x*e

- (Inverses):	for	any	x,	we	can	compute	x-1*x =	e

- (Associative):		For	x, y,	z∈ G,					x*(y*z)	=		(x*y)*z

What	is	a	Group?

To	generate	a	Schnorr group:

1.	Pick	a	random,	large,	(e.g.	2048	bits)	“safe	prime”	p

p is	a	“safe	prime”	if	(p - 1)	/	2	is	also	prime

2.	Pick	a	random	number	g0	in	the	range	2	to	(p	- 1)

3.	Let	g	=	(g0)
2 mod	p.		If	g =	1,	goto step	2

This	is	the	“generator”	of	the	group.

- A	number	x >	0 is	in	the	group	if	x2 ≠ 1	mod	p

- The	order	of	each	element	is	(p	- 1)	/	2.

g(p	- 1)/2 =	1	mod	p

- We	can	compute	inverses	x-1 s.t. x-1	x =	1	mod	p

Schnorr	Groups	in	more	detail

Problems	assumed	“hard”	in	Schnorr groups:

- Discrete	logarithm	problem

Given	gx for	some	random	x,	find	x

- Diffie Hellman	problem	(computational)

Given	ga,	gb for	random	a,b compute	gab

- Diffie Hellman	problem	(decisional)

Flip	a	bit	c,	generate	random	exponents	a,b,r

Given	(ga,	gb,	gab)	if	c=0,			or	(ga,	gb,	gr)	if	c=1,

Guess	c

*These problems are thought to be hard in other groups too,

e.g. some Elliptic Curves

Diffie-Hellman	protocol

Alice	and	Bob	agree	on	public	parameters	(maybe	in	standards	doc)

Alice

Generates	random	

secret	exponent	a.

Bob

Generates	random

secret	value	b.

ga

BobAlice

a b

gb

Computes	x

=	(gb)a

=	gba

Computes	xʹ

=	(ga)b

=	gab

(Notice	that	x =	xʹ)

Can	use	k =	hash(x)	as	a	shared	key.

Passive	eavesdropping	attack

Eve	knows:				g,			ga,			gb

Eve	wants	to	compute	x =	gab

Best	known	approach:	

Find	a or	b,	by	solving	discrete	log,	then	compute	x

No	known	efficient	algorithm.

[What’s	D-H’s	big	weakness?]

ga
BobAlice

a b

gb
Eve

Man-in-the-middle (MITM)	attack

Alice	does	D-H	exchange,	really	with	Mallory,	ends	up	with	gau

Bob	does	D-H	exchange,	really	with	Mallory,	ends	up	with	gbv

Alice	and	Bob	each	think	they	are	talking	with	the	other,	but	really	Mallory	

is	between	them	and	knows	both	secrets

Bottom	line: D-H	gives	you	secure	connection,	but	you	don’t	know	who’s	

on	the	other	end!

ga
BobAlice

a b

gu
Mallory

gv

gb

u v

Defending	D-H	against	MITM	attacks:

• Cross	your	fingers	and	hope	there	isn’t	an	active	adversary.

• Rely	on	out-of-band	communication	between	users.		[Examples?]

• Rely	on	physical	contact	to	make	sure	there’s	no	MITM.		[Examples?]

• Integrate	D-H	with	user	authentication.

If	Alice	is	using	a	password	to	log	in	to	Bob,	leverage	the	password:

Instead	of	a	fixed	g,	derive	g from	the	password	– Mallory	can’t	participate	w/o	

knowing	password.

• Use	digital	signatures. [More	later.]

A visual analogy:

“Mixing paints”

Mixing in a new color is

a little bit like

exponentiation.

Hard to invert?

Two different ways at

arriving at the same final

result.

Public	Key	Encryption

Suppose	Bob	wants	to	receive	data	from	lots	of	people,	

confidentially…

Schemes	we’ve	discussed	would	require	a	

separate	key	shared	with	each	person

Example:	a	journalist	who	wishes	to	receive	secret	tips

Public	Key	Encryption

- Key	generation: Bob	generates	a	keypair
public	key,	kpub and	private	key,	kpriv

- Encrypt: Anyone	can	encrypt	the	message	M,	resulting	in	
ciphertext	C	=	Enc(kpub,	M)

- Decrypt:	Only	Bob	has	the	private	key	needed	to	decrypt	the	
ciphertext:	M=Dec(kpriv,	C)

- Security:	Infeasible	to	guess	M	or	kpriv,	even	knowing	kpuband	
seeing	ciphertexts

Public	Key	Encryption	w/	ephemeral	key	exchange

Key	generation:
kpriv:=	b generated	randomly,	and		kpub:=	g

b

Encrypt(M):
Generate	random	a,	set	k :=	hash(kpub

a),	encrypt	C	= AES-enc(k,	M)
Send	(ga,	C)	as	ciphertext

Decrypt(ga,	C):
compute	k =	hash((ga)b),
decrypt M	=	AES-dec(k,	C)

ga,	C
BobAlice

a b

Evekpub kpub=	g
b

Suppose	Alice	publishes	data	to	lots	of	people,	and	they	

all	want	to	verify	integrity…

Can’t	share	an	integrity	key	with	everybody,	or	

else	anybody	could	forge	messages

Example:	administrator	of	a	source	code	repository

Public	Key	Digital	Signatures

Public	Key	Digital	Signature

- Key	generation:	Bob	generates	a	keypair
public	key,	kpub and	private	key,	kpriv

- Bob	can	sign	a	message	M,	resulting	in	signature
S	= Sign(kpriv,	M)

- Anyone	who	knows	kpub can	check	the	signature:
Verify(kpub,	M,	S)	≟ 1

- “Unforgeable”:	Computationally	infeasible	to	guess	S	or	kpriv,	
even	knowing	kpuband seeing	signatures	on	other	messages

Best	known,	most	common	public-key	algorithm:	RSA

Rivest,	Shamir,	and	Adleman 1978

(earlier	by	Clifford	Cocks	of	UK’s	GCHQ,	in	secret)

How	RSA	signatures	work

Key	generation:

1. Pick	large	(say,	2048 bits)	random	primes	p and	q

2. Compute	N =	pq (RSA	uses	multiplication	mod	N)

3. Pick	e to	be	relatively	prime	to			(p-1)(q-1)

4. Find	d so	that	edmod	(p-1)(q-1)	=	1

5. Finally:	

Public	key is		(e,N)

Private	key is		(d,N)

To	sign: S	=	Sign(x) =	xd mod	N

To	verify: Verif(S) =	Se mod	N								Check	Verif(S)	≟M

Why	RSA	works

“Completeness”	theorem:

For	all	0	< x <	N (except	x =	p or	x =	q),	we	can	show	that	Verif(Sign(x))	=	x

Proof:

Verif(Sign(x))

=	(xd mod	pq)e mod	pq

=	xed mod	pq

=	xa(p-1)(q-1)+1 mod	pq for	some	a (because	edmod	(p-1)(q-1)	=	1)

=	(x(p-1)(q-1))axmod	pq

=	(x(p-1)(q-1) mod	pq)axmod	pq

=	1axmod	pq (by	Euler’s	theorem, x(p-1)(q-1) mod	pq =	1)

=	x

Is	RSA	secure?

Best	known way	to	compute	d from	e is	factoring	N into	p and	q.

Best	known factoring	algorithm:

General	number	field	sieve

Takes	more	than	polynomial	time but	less	than	exponential	time to	

factor	n-bit	number.

(Still	takes	way	too	long	if	p,q are	large	enough	and	random.)

Fingers	crossed…

but	can’t	rule	out	a	breakthrough!

To generate an RSA keypair:

$ openssl genrsa -out private.pem 1024

$ openssl rsa -pubout -in private.pem > public.pem

To sign a message with RSA:

$ openssl rsautl -sign -inkey private.pem -in a.txt > sig

To verify a signed message with RSA:

$ openssl rsautl -verify -pubin -inkey public.pem -in sig

Public key digital

signatures on

hashes of code

releases

“Pretty Good Privacy”

- alternate command line tool

https://xkcd.com/1181/

Subtle	fact: RSA	can	be	used	for	

either	confidentiality	or	integrity

RSA	for	confidentiality:

Encrypt	with	public	key,	Decrypt	with	private	key

Public	key is		(e,N)

Private	key is		(d,N)

To	encrypt: E(x) =	xe mod	N

To	decrypt: D(x) =	xd mod	N								

RSA	for	integrity:

Encrypt	(“sign”)	with	private	key

Decrypt	(“verify”)	with	public	key

RSA	drawback:	Performance

Factor	of	1000	or	more	slower	than	AES.

Dominated	by	exponentiation	– cost goes	up	(roughly)	as	cube	of	key	size.

Message	must	be	shorter	than	N.

Use	in	practice:

Hybrid	Encryption	(similar	to	key	exchange):

Use	RSA	to	encrypt	a	random	key	k	<	N,	then	use	AES

Signing:	

Compute	v :=	hash(m),	use	RSA	to	sign	the	hash									

Should	always	use	crypto	libraries	to	get	details	right

The	reality	is	more	complicated

Can’t	just	compute	me mod	N	(what	if	we	know	m	<	N1/e?)

Need	to	pad	the	message

Some	schemes	are	good	(PSS,	OAEP)

Some	schemes	are	bad	(PKCS#1v1.5)

Different	for	signatures	and	encryption

What	can	go	wrong	with	RSA?

Hundreds of things!!

Many have a common theme: tweaking the

protocol for efficiency (e.g., small exponents)

leads to a compromise.

One	example	of	a	failure:	Common	P’s	and	Q’s

Individually,				N	=	pq is	very	hard	to	factor.

Turns	out,	due	to	poor	entropy,	many	pairs	of	RSA	keys	are	

generated	with	same	p

N1 =	pq1

N2 =	pq2

Given	two	products	with	a	common	factor,	easy	to	compute	

GCD(N1,	N2) =	p with	Euclid’s	algorithm.

Key	Management

The	hard	part	of	crypto:			Key-management

Principles:

0.	 Always	remember,	key	management	is	the	hard	part!

1. Each	key	should	have	only	one	purpose
(in	general,	no	guarantees	when	keys	reused	elsewhere)

1. Vulnerability	of	a	key	increases:

a. The	more	you	use	it.
b. The	more	places	you	store	it.
c. The	longer	you	have	it.

2. Keep	your	keys	far	from	the	attacker.

3. Protect	yourself	against	compromise	of	old	keys.

Goal:	forward	secrecy	— learning	old	key	shouldn’t	help	adversary	learn	
new	key.

[How	can	we	get	this?]

Building	a secure	channel

What	if	you	want	confidentiality	and	integrity	at	the	same	time?

Encrypt,	then	MAC

not	the	other	way	around

Use	separate	keys for	confidentiality	and	integrity.

Need	two	shared	keys,	

but	only	have	one?	

That’s	what	PRGs	are	for!		

If	there’s	a	reverse	(Bob	to	Alice)	channel,	use	separate	keys	for	that	too

Issue:		How	big	should	keys	be?

Want	prob.	of	guessing	to	be	infinitesimal…	but	watch	out	for	Moore’s	law	– safe	size	

gets	1	bit	larger	every	18	months

128	bits	usually	safe	for	ciphers/PRGs

Need	larger	values	for	MACs/PRFs	due	to	birthday	attack

Often	trouble	if	adversary	can	find	any	two	messages with	same	MAC

Attack:	Generate	random	values,	look	for		coincidence.

Requires	O(2|k|/2)	time,	O(2|k|/2)	space.

For	128-bit	output,	takes	264 steps:	doable!

Upshot:	Want	output	of	MACs/PRFs	to	be	twice	as	big	as	cipher	keys	e.g.	
use	HMAC-SHA256	alongside	AES-128

https://www.keylength.com/en/4/

https://www.keylength.com/en/4/

Attacks	against	Crypto

1. Brute	force:	trying	all	possible	private	keys

2. Mathematical	attacks:	factoring

3. Timing	attacks:	using	the	running	time	of	decryption

4. Hardware-based	fault	attack:	induce	faults	in	hardware	to	
generate	digital	signatures

5. Chosen	ciphertext	attack

6. Architectural	Changes

Quantum Computers:

What	will	be	impacted?

Public	key	crypto:

RSA

Elliptic	Curve	Cryptography	(ECDSA)

Finite	Field	Cryptography	(DSA)

Diffie-Hellman	key	exchange

Symmetric	key	crypto:

AES,		Triple	DES	

Hash	functions:

SHA-1,	SHA-2	and	SHA-3

Need	Larger	Keys

Use	longer	output

So	Far:

Message	Integrity

Confidentiality

Key	Exchange

Public	Key	Crypto

Next:

HTTPS	and	TLS:	Secure	channels	for	the	web

