
Lecture 19 – Randomness,

Pseudo Randomness, and

Confidentiality
Stephen Checkoway

University of Illinois at Chicago

CS 487 – Fall 2017

Slides from Miller and Bailey’s ECE 422

Randomness
and

Pseudorandomness

Review

Problem:	

Integrity	of	message	sent	from	Alice	to	Bob

Append	bits	to	message	that	only	Alice	and	Bob	can	make

Solution:

Message	Authentication	Code	(MAC)

Practical	solution:	

Hash-based	MAC	(HMAC)	– HMAC-SHA256k(M)

Where	do	these	random	keys	k come	from	…	?

Careful:	We’re	often	sloppy	about	what	is	“random”

True	Randomness

Output	of	a	physical	process	that	is	inherently	random

Scarce,	and	hard	to	get

Pseudorandom	Function (PRF)

Sampled	from	a	family	of	functions	using	a	key

Pseudorandom	generator (PRG)

Takes	small	seed	that	is	really	random

Generates	a	stream	(arbitrarily	long	sequence)	of	numbers	that	are	“as	

good	as	random”

Definition:	PRG is	secure	if	it’s	indistinguishable	

from	a	random	stream	of	bits

Similar	game	to	PRF	definition:

1. We	flip	a	coin	secretly	to	get	a	bit	b

2. If	b=0,	let	s be	a	truly	random	stream

If	b=1,	let	s be	gk for	random	secret	k

3. Mallory	can	see	as	much	of	the	output	of	s as	

he/she	wants

4. Mallory	guesses	b,	

wins	if	guesses	correctly

g is	a	secure	PRG	if	no	winning	strategy	for	Mallory*

Here’s	a	simple	PRG	that	works:

For	some	random	k	and	PRF	f,	
output:				fk(0)			|| fk(1)			|| fk(2)			|| …

Theorem: If	f is	a	secure	PRF,	and	g is	built	from	f by	this	construction,	then	g is	a	
secure	PRG.

Proof: Assume	f is	a	secure	PRF,	we	need	to	show	that	g is	a	secure	PRG.		

Proof	by	contradiction:	

1. Assume	g is	not secure;	so	Mallory	can	win	the	PRG	game

2. This	gives	Mallory	a	winning	strategy	for	the	PRF	game:
a.	 query	the	PRF	with	inputs	0,	1,	2,	…
b. apply	the	PRG-distinguishing	algorithm

3. Therefore,	Mallory	can	win	PRF	game;	this	is	a	contradiction

4. Therefore,	g	is	secure

Where	do	we	get	true	randomness?

Want	“indistinguishable	from	random” which	means:	adversary	can’t	guess	
it

Gather	lots	of	details	about	the	computer	that	the	adversary	will	have	
trouble	guessing		[Examples?]

Problem:	Adversary	can	predict	some	of	this

Problem:	How	do	you	know	when	you	have	enough	randomness?

Modern	OSes	typically	collect	randomness,	give	you	API	calls	to	get	it

e.g.,	Linux:

/dev/random gives	output	of	a	PRG,	blocking	if	its	entropy	estimate	is	low

/dev/urandom gives	output	of	the	same PRG but nonblocking

Review:				Message	Integrity
Integrity of	message	sent	over	an	untrusted	channel

Alice	must	append	bits	to	message	that	only	Alice	(or	Bob)	can	make

Idealized	solution:	Random	function

Practical	solution:	

(Hash-based)	MAC
fk is	(we	hope!)	indistinguishable	in	practice	from	a	random	function,	unless	you	
know	k

e.g.	“Attack	at	dawn”,	628369867…

m,	v	:= fk(m)

Bob

mʹ,	vʹ	=? fk(mʹ)

Alice Mallory
k k

Confidentiality

Confidentiality

Goal:	Keep	contents	of	message	p secret	from	an	eavesdropper

Terminology

p plaintext

c ciphertext

k secret	key

E encryption	function

D decryption	function

c	:=	Ek(p)

Bob

p :=	Dk(c)

Alice
k k

Eve

c

Digression:	Classical	Cryptography

Caesar	Cipher
First	recorded	use:	Julius	Caesar	(100-44	BC)

Replaces	each	plaintext	letter	with	one	a	fixed	number	of	places	down	the	alphabet

Encryption:		 ci :=	(pi	+	k)	mod	26

Decryption:		 pi :=	(ci	- k)	mod	26

e.g.	(k=3):

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
+ Shift: 33333333333333333333333333
= Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Plain: go flames
+ Key: 33 333333
= Cipher: JR IODPHV

Cryptanalysis of	the	Caesar	Cipher

Only	26	possible	keys:	

Try	every	possible	k by	“brute	force”

Can	a	computer	recognize	the	right	one?

Use	frequency	analysis: English	text	has	distinctive	letter	frequency	

distribution

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Later	advance:	 Vigènere Cipher
First	described	by	Bellaso in	1553,	later	misattributed	to	Vigenère

Called	«le	chiffre indéchiffrable» (“the	indecipherable	cipher”)

Encrypts	successive	letters	using	a	sequence	of	Caesar	ciphers	determined	
by	the	letters	of	a	keyword

For	an	n-letter	keyword	k,

Encryption: ci :=	(pi	+	kimod	n)	mod	26
Decryption: pi :=	(ci	– kimod	n)	mod	26

Example:		k=ABC (i.e.	k0=0,	k1=1,	k2=2)

Plain: bbbbbb amazon
+Key: 012012 012012
=Cipher bcdbcd anczpp

Cryptanalysis	of	the	Vigènere Cipher

Simple,	if	we	know	the	keyword	length,	n:

1.	Break	ciphertext into	n slices
2.	Solve	each	slice	as	a	Caesar	cipher

How	to	find	n?		One	way:	Kasiski method
Published	1863	by	Kasiski (earlier	known	to	Babbage?)

Repeated	strings	in	long	plaintext	will	sometimes,	by	coincidence, be	encrypted	
with	same	key	letters

Plain: CRYPTOISSHORTFORCRYPTOGRAPHY
+Key: ABCDABCDABCDABCDABCDABCDABCD

=Cipher: CSASTPKVSIQUTGQUCSASTPIUAQJB

Distance	between	repeated	strings	in	ciphertext is	likely	a	multiple	of	key	length e.g.,	
distance	16	implies	n is	16,	8,	4,	2,	1

[What	if	key	is	as	long	as	the	plaintext?]

Kerckhoff’s Principles

1st: The system must be practically, if not mathematically, indecipherable;

2nd: The system must not require secrecy and must not cause

inconvenience should it fall into the hands of the enemy;

3rd: The key must be able to be used in communiques and retained without the help of written notes, and be

changed or modified at the discretion of the correspondents;

4th: The system must be compatible with telegraphic communication;

5th: The system must be portable, and remain functional without the help of multiple people;

6th: Finally, it’s necessary, given the circumstances in which the system will be applied, that it’s easy to use, is

undemanding, not overly stressful, and doesn’t require the knowledge and observation of a long series of rules

“Any fool can invent a cipher

that he himself cannot break.”

https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign

“Schneier's law”

One-time	Pad	(OTP)

Alice	and	Bob	jointly	generate	a	secret,	

very	long,	string	of	random bits	

(the	one-time	pad,	k)

To	encrypt:		ci =	pi xor ki

To	decrypt:		pi =	ci xor ki

“one-time”	means	you	should	never reuse	any	part	of	the	pad.

If	you	do:

Let	ki be	pad	bit

Adversary	learns	(a xor ki)	and	(b xor ki)

Adversary	xors those	to	get	(a xor b),	

which	is	useful	to	him		[How?]

Provably	secure		[Why?]

Usually	impractical		[Why?		Exceptions?]

a b a xor b

0	 0 0

0 1 1

1 0 1

1 1 0

a	xor b xor b	= a

a	xor b xor a	= b

Obvious	idea:	Use	a	pseudorandom	generator	instead	of	a	truly	random	

pad

(Recall:	Secure	PRG inputs	a	seed	k,	outputs	a	stream	that	is	practically	

indistinguishable	from	true	randomness	unless	you	know	k)

Called	a	stream	cipher:

1. Start	with	shared	secret	key	k

2. Alice	&	Bob	each	use	k to	seed	the	PRG

3. To	encrypt,	Alice	XORs	next	bit	of	her	generator’s	output	with	next	bit	of	

plaintext

4. To	decrypt,	Bob	XORs	next	bit	of	his	generator’s	output	with	next	bit	of	

ciphertext

Works	nicely,	but:	don’t	ever reuse	the	key,	or	the	generator	output	bits

Another	approach:	Block	Ciphers

Functions	that	encrypts	fixed-size	blocks	with	a	reusable	key.

Inverse	function	decrypts	when	used	with	same	key.

The	most	commonly	used	approach	to	encrypting	for	confidentiality.

A	block	cipher	is	not a	pseudorandom	function		[Why?]

Ek

Plaintext

Ciphertext

Key

What	we	want	instead: pseudorandom	permutation	(PRP)

function	from	n-bit	input	to	n-bit	output

distinct	inputs	yield	distinct	outputs					(one-to-one)

Defined	similarly	to	PRF:	

practically	indistinguishable	from	a	

random	permutation without	secret	k

Basic	challenge:	Design	a	hairy	function	that	is	invertible,	but	only	if	you	have	

the	key

Minimal	properties	of	a	good	block	cipher:

- Highly	nonlinear	(“confusion”)

- Mixes	input	bits	together	(“diffusion”)

- Depends	on	the	key

Definition:	a	cipher	is	“Semantically	Secure”

Similar	game	to	PRF/PRG/PRP	definition:

1. We	flip	a	coin	secretly	to	get	a	bit	b,	random	secret	k

2. Mallory	chooses	arbitrary	mi inM,	gets	to	see	Enck(mi)

3. Mallory	chooses	two	messages	m’0 and	m’1 not	inM

4. If	b=0,	let	c be	Enck(m’0)

If	b=1,	let	c be	Enck(m’1)

5. Mallory	can	see	c

6. Mallory	guesses	b,	wins	if	guesses	correctly

We	can	prove	this	follows	from	a	PRP	definition.				[Fun	to	try!]

Also	known	as:	IND-CPA							“Chosen	plaintext	attack”	

Today’s	most	common	block	cipher:

AES (Advanced	Encryption	Standard)

- Designed	by	NIST	competition,	long	public	comment/discussion	period

- Widely	believed	to	be	secure,	

but	we	don’t	know	how	to	prove	it

- Variable	key	size	and	block	size

- We’ll	use	128-bit	key,	128-bit	block	

(are	also	192-bit	and	256-bit	versions)

- Ten	rounds:	Split	k	into	ten	subkeys,	performs	set	of	operations	ten	times,	

each	with	diff.	subkey

Each	AES	round
128-bits	in,	128-bit	sub-key,		128-bits	out

Four	steps:	
picture	as	operations	on	a
4x4	grid	of	8-bit	values

1.	Non-linear	step
Run	each	byte	through	a	non-linear	function	(lookup	table)

2.	Shift	step:		Circular-shift	each	row:	ith row	shifted	by	i (0-3)

3.	Linear-mix	step
Treat	each	column	as	a	4-vector;	multiply	by	constant	invertible	matrix

4.	Key-addition	step
XOR	each	byte	with	corresponding	byte	of	round	subkey

To	decrypt,	just	undo	the	steps,	in	reverse	order

Remaining	problem:	

How	to	encrypt	longer	messages?

Padding:

Can	only	encrypt	in	units	of	cipher	blocksize,	but	message	might	

not	be	multiples	of	blocksize

Solution:	Add	padding	to	end	of	message

Must	be	able	to	recognize	and	remove	padding	afterward

Common	approach:		Add	n bytes	that	have	value	n

[Caution:	What	if	message	ends	at	a	block	boundary?]

Cipher	modes	of	operation

We	know	how	to	encrypt	one	block,	but	what	about	multiblock messages?

Different	methods,	called	“cipher	modes”

Straightforward	(but	bad)	approach:

ECB	mode (electronic	codebook)

Just	encrypt	each	block	independently

Ci :=	Ek(Pi)

[Disadvantages?]

Cipher	modes	of	operation

We	know	how	to	encrypt	one	block,	but	what	about	multiblock messages?

Different	methods,	called	“cipher	modes”

Straightforward	(but	bad)	approach:

ECB	mode (electronic	codebook)

Just	encrypt	each	block	independently

Ci :=	Ek(Pi)

[Disadvantages?]

Plaintext Pseudorandom ECB	mode

Better	(and	common):	

CBC	mode (cipher-block	chaining)

Fake-CBC (for	illustration	only)

For	each	block	Pi:

1.	Generate	random	block	Ri

2.	Ci :=	(Ri ||	Ek(Pi xor Ri))

[Pros	and	cons?]

Real	CBC

Replace	Ri with	Ci-1

No	need	to	send	separately

Must	still	add	one	random	R-1 to	start,	called	“initialization	vector”	(“IV”)

Illustration:	CBC	Encryption

[Decryption?]

P0 P1 P2 …….

C0 C1 C2 …….

IV

⊕ ⊕ ⊕

EK EK EK

IV

[Is	CBC	space-efficient?]

Using OpenSSL to do AES encryption from the command line

$ KEY=$(openssl rand -hex 16)

$ openssl aes-128-cbc -in mymsg.txt -out mymsg.enc

-p -K ${KEY} -iv $(openssl rand -hex 16)

key=218EEFE192DE9D46DDCF6C6D12D480DD

iv =DBB272FE6486C4D9B09DBE464E080468

$ openssl aes-128-cbc -d -in mymsg.enc -out mymsg.txt

-K ${KEY} -iv <iv from above>

Prints the key and IV

Generates a random string

- By default, uses the standard padding described earlier

- Unfortunately, you have to handle prepending/extracting the IV on your own

Other	modes

OFB,	CFB,	etc.	– used	less	often

Counter	mode

Essentially	uses	block	cipher	as	a	pseudorandom	generator

XOR	ith block	of	message	with	Ek(message_id || i)

[Why	do	we	need	message_id?]

[Do	we	need	a	message_id for	CBC	mode?]

[Recover	after	errors?	Decrypt	in	parallel?]

What	is	NOT covered	by	Semantic	Security?

- “Malleability” attacks

Given just some ciphertexts, can the attacker create new ciphertexts that

Bob decrypts the wrong value?

- Encryption does NOT IMPLY integrity!

Often you really want both (“authenticated encryption”)

- Chosen Ciphertext attacks

The “semantic security” definition does not allow the adversary to see

decryptions of (potentially garbage) ciphertexts chosen by the adversary

Solution: Encrypt-then-MAC

Better: Use authenticated encryption modes: GCM, OCB, CCM, etc.

Assumption	we’ve	been	making	so	far:

Alice	and	Bob	shared	a	secret	key in	advance

Amazing	fact:

Alice	and	Bob	can	have	a	public conversation	to	derive	a	shared	key!

So	Far

Message	Integrity

Randomness	/Pseudorandomness

Confidentiality:	Stream	Ciphers,	Block	Ciphers

Next	time…

Key	Exchange,	Key	Management,	Public	Key	Crypto

