
Lecture 18 – Message Integrity
Stephen Checkoway

University of Illinois at Chicago

CS 487 – Fall 2017

Slides from Miller & Bailey’s ECE 422

Cryptography is the study/practice of

techniques for secure communication, even

in the presence of powerful adversaries who

have control over the underlying channel

Alice Bob

Eve (or Mallory)

Wiretaps the channel

Drops messages

Tampers with messages

Send messages to each other over

a channel (e.g., a shoe string, a

copper wire, a TCP socket)

Learning goals of cryptography module

- Understand the interfaces of basic crypto primitives

Hashes, MACs, symmetric encryption, public key encryption,

digital signatures, key exchange

- Apply the adversarial mindset to crypto protocols

- Appreciate the following warning:

“Don’t roll your own Crypto!” …….

- Familiarity with concepts, vocabulary

Lectures are for breadth

Cryptography can help ensure:

- Confidentiality: secrecy, privacy

- Integrity: tamper resilience

- Availability

- Non-repudiability, or deniability

…. many more properties

Cryptography is not just encryption!

Message	Integrity

Hashes,	MACs

Alice Bob

Threat model:
Mallory can see, forge, tamper

with messages

Goal:	Secure	File	Transfer
Alice	wants	to	send	file	m to	Bob	(let’s	say,	a	4	Gigabyte	movie)

Mallory	wants	to	trick	Bob	into	accepting	a	file	Alice	didn’t	send

m m’

Threat model:
Mallory can see, forge, tamper

with messages

Goal:	Secure	File	Transfer
Alice	wants	to	send	file	m to	Bob	(let’s	say,	a	4	Gigabyte	movie)

Mallory	wants	to	trick	Bob	into	accepting	a	file	Alice	didn’t	send

m m’

Alice Bob

Setup assumption: Securely transfer a short message!

Short	message v

Solution:	Collision	Resistant	Hash	Function	(CRHF)
Hash	Function	h:	{0,1}*	→	{0,1}256 (or	other	fixed	number)

1.	Alice	computes	v :=	h(m)

2.	Alice	transfers	v over	secure	channel,	m over	insecure	channel

3.	Bob	verifies	that	v	=	h(mʹ),		accepts	file	iff this	is	true

Function	h	? We’re	sunk	if	Mallory	can	compute	m’ ≠	m

where	h(m)	=	h(m’)! A	collision!

Contrast	with:	“checksums”	e.g.	CRC32....	defend	against	random	errors,	not	a	
deliberate	attacker!

m
Bob

mʹ
Alice Mallory

v

Hash	function	properties

Good	hash	functions	should	have	the	following	properties

First	pre-image resistance:

Given	h(m),	it	is	computationally	infeasible	to	find	m’	s.t. h(m’) =	h(m)

Second	pre-image resistance:

Given m1, it	is	computationally	infeasible	to find	m2 ≠	m1 s.t. h(m1)	=	h(m2)

Collision resistance:

It	is	computationally	infeasible	to	find any m1	≠	m2 s.t. h(m1)	=	h(m2)

Which of these properties

implies which others?

Hash	function	construction

• Merkle–Damgård construction

• Pad	message	to	a	multiple	of	block	size

• Run	a	compression	function	over	each	block	and	the	output	of	the	previous	

compressed	block	(see	next	slide)

• Used	for	MD5,	SHA-1,	SHA-2

• Sponge	construction

• Pad	message	to	a	multiple	of	a	fixed	size	(the	bitrate	r)

• “Absorb”	the	message	r	bits	at	a	time	by	XORing with	part	of	the	internal	state,	

and	permuting	the	whole	state	by	permutation	f

• “Squeeze”	out	the	output	r	bits	at	a	time,	applying	f	in	between

• SHA-3

h

h

h

H(M)

IV

…

b0

M pad b1

bn-1

…

Merkle–Damgård Construction

- Arbitrary-length	input

- Fixed-length	output

- Built	from	fixed-size	“compression	function”

Arbitrary	length	

input

Fixed-length	

inputs/outputs

Fixed	

length	output

Sponge	construction

• Internal	state	initially	0

r+c total	bits

• Pi are	message	blocks

• Zi are	the	output	blocks

The	SHA256 compression	function,	h

Cryptographic	hash	

Input:	arbitrary	length	data			
(No	key)	
Output:	256	bits

Built	with	compression	
function,	h
(256	bits,	512	bits)		in	→			
256	bits	out

Designed	to	be	really	hairy	
(64	rounds	of	this)!

Confusion	and	

Diffusion

What	is	SHA256?
$ sha256sum file.dat

“One round of the algorithm

takes 16 minutes, 45 seconds

which works out to a hash

rate of 0.67 hashes per day.”

https://www.youtube.com/watch?v=y3dqhixzGVo

Other	hash	functions:

MD5
Once	ubiquitous

Broken	in	2004

Turns	out	to	be	easy	to	find	collisions

(pairs	of	messages	with	same	MD5	hash)

SHA-1
Currently	widely	used,	but	going	away

Broken	in	2017

Don’t	use	in	new	applications

SHA-3
Different	construction:	“Sponge”

Not	susceptible	to	length-extension

http://valerieaurora.org/hash.html

How	do	you	find	a	collision?

- Pigeonhole	principle: collisions	must	exist

Input	space	{0,1}*	larger	than	output	{0,1}256

- Birthday	attack:	 build	a	table	with	2128 entries

With	~50%	probability,	have	a	collision

- Cycle	finding:	“Tortoise	and	hare”	algorithm

h(x),		h(h(x)),		h(h(h(x),		..,				hi(x)

- These	are	generic—actual	attacks	rely	on	structure of	the	

particular	function

Most	cryptographic	primitives	come	with	a	security	parameter

Usually	k,	or	λ

- Often	corresponds	to	a	key	size

- Cryptography	protocols	run	in	polynomial time	

i.e.,	as	a	function	of		λ, O(poly(λ))

- Ideally,	we	can	show	that	the	chance	of	failure	is	negligible,	or	

vanishingly small	as	a	function	of		λ

O(negl(λ))

Concrete	Parameterization

How	large	of	a	digest	size	should	we	choose?

1.	Estimate	an	attacker’s	budget

E.g.,	the	entire	NSA

2.	Consider	the	best	known	attacks
Reduction	from	protocol	to	well-studied	problem

3.	Add	a	safety	margin
If	all	goes	well,	adding	1	bit	increases	search	space	by	2x

Alice Bob

Threat model:
Mallory can see, forge, tamper

with messages

Goal:	Message	Integrity
Alice	wants	to	send	message	m to	Bob

Mallory	wants	to	trick	Bob	into	accepting	a	message	Alice	didn’t	send

m m’

Alice, x Bob, x

Threat model:
Mallory can see, forge, tamper

with messages

Goal:	Message	Integrity

Setup assumption: shared secret

Alice	wants	to	send	message	m to	Bob

Mallory	wants	to	trick	Bob	into	accepting	a	message	Alice	didn’t	send

m m’

Solution:	Message	Authentication	Code	(MAC)

1.		Alice	computes	v :=	f(m)

2.

3.	Bob	verifies	that	vʹ =	f(mʹ),
accepts	message	iff this	is	true

Function	f	?

Easily	computable	by	Alice	and	Bob;
not computable	by	Mallory

(Idea:	Secret	only	Alice	&	Bob	know)

We’re	sunk	if	Mallory	can	learn	
f(m’)	for	any	m ≠	m’!

e.g.	“Attack	at	dawn”,	628369867…

m,	v
Bob

mʹ,	vʹ
Alice Mallory

Candidate	f:	
Random	function

Input: Any	size	up	to	huge	maximum

Output: Fixed	size	(e.g.	256	bits)

Defined	by	a	giant	lookup	table	that’s
filled	in	by	flipping	coins

Completely	impractical

Provably	secure

… …

0 → 0011111001010001…

1 → 1110011010010100…	

2 → 0101010001010000…

[Why?]

[Why?]

Want	a	function	that’s	practical	but	“looks	random”…

Pseudorandom	function	(PRF)

Let’s	build	one:

Start	with	a	big	family	of	functions

f0,	f1,	f2,	… all	known	to	Mallory

Use	fk,	where	k is	a	secret	value	

(or	“key”)	known	only	to	Alice/Bob

k is	(say)	256	bits,	chosen	randomly

Kerckhoffs’s Principle

Don’t	rely	on	secret	functions

Use	a	secret	key,	to	choose	from	a	function	family

[Why?]

More	formal	definition	of	a	secure	PRF:
Game	against	Mallory

1. We	flip	a	coin	secretly	to	get	bit	b

2. If	b=0,	let	g be	a	random	function
If	b=1,	let	g =	fk,	where	k is	a	
randomly	chosen	secret

3. Repeat	until	Mallory	says	“stop”:
Mallory	chooses	x;	we	announce	g(x)

4. Mallory	guesses	b

We	say	f is	a	secure	PRF	if	Mallory	can’t	do	better	than	random	guessing*

i.e.,	fk is	indistinguishable	in	practice	from	a	random	function,	unless	you	know	k

Important	fact:	There’s	an	algorithm	that	always	wins	for	
Mallory

[What	is	it?]				[How	to	fix	it?]

A	solution	for	Alice	and	Bob:
1. Let	f by	a	secure	PRF

2. In	advance,	choose	a	random	k known	only	to	Alice	and	Bob

3. Alice	computes	v :=	fk(m)

4. Bob	verifies	that	vʹ =	fk(mʹ),

accepts	message	iff this	is	true

[Important	assumptions?]

What	if	Alice	and	Bob	want	to	send	more	than	one	message?

[Attacks?]			[Solutions?]

m,	v
Bob

mʹ,	vʹ
Alice Malloryk k

Is	this	a	secure	PRF?	

fk(m)	=	SHA256(k ||	m)

h

h

h

H(M)

IV

…

b0

M pad b1

bn-1

…

Merkle–Damgård	Construction

- Arbitrary-length	input

- Fixed-length	output

- Built	from	fixed-size	“compression	function”

Arbitrary	length	

input

Fixed-length	

inputs/outputs

Fixed	

length	output

Recommended	Approach:	

Hash-based	MAC	(HMAC)
HMAC-SHA256 see	RFC	2104

HMACk(m)	=

0x3636… 0x5c5c…
Concatenation

XOR

SHA256	function

takes	arbitrary	length	input,

returns	256-bit	output

Message	Authentication	Code (MAC)
e.g.	HMAC-SHA256

vs.

Cryptographic	hash	function
e.g.	SHA256

not a	strong	PRF

Used	to	think	the	distinction	didn’t	matter,	now	we	think	it	
does

e.g.,	length	extension	attacks

Better	to	use	a	MAC/PRF	(not	a	hash)

$ openssl dgst -sha256 -hmac <key>

MAC Crypto Game

Game against Mallory

1. Give Mallory MAC(k, mi) for all mi in M

In other words, Mallory has an oracle

Mallory can choose next mi after seeing answer

2. Mallory tries to discover MAC(k, m’) for a new m’

not in M

We can show the MAC game reduces to the PRF

game. Mallory wins MAC game → she wins PRF

game.

This is a Security Proof

What	is	a	Security	Proof?
- A	reduction from	an	attack	on	your	protocol to	an	attack	on	a	widely	

studied,	hard	problem

- Excludes	large	classes	of	attacks,	guides	composition

- Proofs	are	in	models.	So,	attack	outside	the	model!

- It	does	NOT prove that	your	protocol	is	secure

- We	don’t	know	if	there	are	any	hard	problems!

- The	field	of	Modern Cryptography is	based	on	proofs

-Most	widely	used	primitives	(SHA-256,	AES,	DSA)	have	no	security	proof.	We	

rely	on	them	because	they’re	widely	studied

So	Far

Message	Integrity

Next	time	…

The	classic	problem	in	crypto:

How	can	Alice	send	Bob	a	message,	with	confidentiality?

