
Lecture	15	– Access	Control

Stephen	Checkoway

University	of	Illinois	at	Chicago

CS	487	– Fall	2017

Slides	based	on	Bailey’s	ECE	422

Authentication	vs	Authorization	

• Authentication	¾Who	goes	there?

– Restrictions	on	who	(or	what)	can	access	system

• Authorization¾ Are	you	allowed	to	do	that?

– Restrictions	on	actions	of	authenticated	users

• Authorization	is	a	form	of	access	control

• Authorization	enforced	by

– Access	Control	Lists

– Capabilities

Access	Control

• Access	control	is	a	collection	of	methods	and	components	that	

supports

– confidentiality

– integrity

• Goal:	allow	only	authorized	subjects to	access	permitted	

objects

• E.g.,	Least	privilege	philosophy

– A	subject	is	granted	permissions	needed	to	accomplish	required	tasks	

and	nothing	more

Access	Control	Designs

• Access	control	designs	define	rules	for	users	accessing	files	or	

devices

• Three	common	access	control	designs

– Mandatory	access	control

– Discretionary	access	control

– Role-based	access	control

Mandatory	Access	Control	(MAC)

• It	is	a	restrictive	scheme	that	does	not	allow	users	to	define	

permissions	on	files,	regardless	of	ownership.

• Instead,	security	decisions	are	made	by	a	central	policy	

administrator.	

• A	common	implementation	is	rule-based	access	control

– Subject	demonstrates	need-to-know	in	addition	to	proper	security	

clearance

– Need-to-know	indicates	that	a	subject	requires	access	to	object	to	

complete	a	particular	task

• Security-Enhanced	Linux	(SELinux)	incorporates	MAC

Discretionary	Access	Control

• Discretionary	access	control,	or	DAC,	refers	to	a	scheme	where	

users	are	given	the	ability	to	determine	the	permissions	

governing	access	to	their	own	files.	

– DAC	typically	features	the	concept	of	both	users	and	groups

– In	addition,	DAC	schemes	allow	users	to	grant	privileges	on	resources	

to	other	users	on	the	same	system.

• Most	common	design	in	commercial	operating	systems

– Generally	less	secure	than	mandatory	control

– Generally	easier	to	implement	and	more	flexible

Role-Based	Access	Control

• The	role-based	access	control	(RBAC)	model	can	be	viewed	as	

an	evolution	of	the	notion	of	group-based	permissions	in	file	

systems.	

• An	RBAC	system	is	defined	with	respect	to	an	organization,	

such	as	company,	a	set	of	resources,	such	as	documents,	print	

services,	and	network	services,	and	a	set	of	users,	such	as	

employees,	suppliers,	and	customers

• Uses	a	subject’s	role	or	task	to	grant	or	deny	object	access

Visualizing	Role	Hierarchy

8

Example	of	Implementing	Policy

Filesystem Access	Control

Access	Control	Entries	and	Lists

• An	Access	Control	List	(ACL)	for	a	resource	(e.g.,	a	file	or	folder)	

is	a	list	of	zero	or	more	Access	Control	Entries	(ACEs)

• An	ACE	refers	specifies	that	a	certain	set	of	accesses	(e.g.,	read,	

execute	and	write)	to	the	resources	is	allowed	or	denied	for	a	

user	or	group

• Examples	of	ACEs	for	folder	“CS	487	Grades”

– Professor;	Read;	Allow

– Students;	Read;	Allow

– Professor;	Write;	Allow

– Students;	Write;	Deny

Linux	File	System

• Tree	of	directories	(folders)

• Each	directory	has	links	to	zero	or	more	files	or	directories

• Hard	link

– From	a	directory	to	a	file

– The	same	file	can	have	hard	links	from	multiple	directories,	each	with	its	own	filename,	but	all	sharing	

owner,	group,	and	permissions

– File	deleted	when	no	more	hard	links	to	it

• Symbolic	link	(symlink)

– From	a	directory	to	a	target	file	or	directory

– Stores	path	to	target,	which	is	traversed	for	each	access

– The	same	file	or	directory	can	have	multiple	symlinks to	it

– Removal	of	symlink does	not	affect	target

– Removal	of	target	invalidates	(but	not	removes)	symlinks to	it

– Analogue	of	Windows	shortcut	or	Mac	OS	alias

Unix	Permissions

• Standard	for	all	UNIXes

• Every	file	is	owned	by	a	user	and	has	an	associated	group

• Permissions	often	displayed	in	compact	10-character	notation

• To	see	permissions,	use	ls –l

jk@sphere:~/test$ ls –l

total 0

-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1

-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2

Permissions	Examples	(Regular	Files)

read/write/execute	to	everyone-rwxrwxrwx

read-only	to	everyone,	including	

owner

-r--r--r--

read/write/execute	for	owner,	

forbidden	to	everyone	else

-rwx------

read/write	for	owner,	read-only	for	

group,	forbidden	to	others

-rw-r-----

read/write	for	owner,	read-only	for	

everyone	else

-rw-r--r--

Permissions	for	Directories

• Permissions	bits	interpreted	differently	for	directories

• Read bit	allows	listing	names	of	files	in	directory,	but	not	their	properties	like	size	

and	permissions

• Write bit	allows	creating	and	deleting	files	within	the	directory

• Execute bit	allows	entering	the	directory	and	getting	properties	of	files	in	the	

directory

• Lines	for	directories	in	ls –l output	begin	with	d,	as	below:

jk@sphere:~/test$ ls –l
Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1

Permissions	Examples	(Directories)

full	access	to	everyone-rwxrwxrwx

full	access	to	owner,	group	can	

access	known	filenames	in	

directory,	forbidden	to	others

drwx--x---

full	access	to	owner	and	group,	

forbidden	to	others

drwxrwx---

all	can	enter	and	list	the	directory,	

only	owner	can	add/delete	files

drwxr-xr-x

Special	Permission	Bits

• Three	other	permission	bits	exist

– Set-user-ID (“suid”	or	“setuid”)	bit

– Set-group-ID (“sgid”	or	“setgid”)	bit

– Sticky	bit

Set-user-ID

• Set-user-ID	(“suid”	or	“setuid”)	bit

– On	executable	files,	causes	the	program	to	run	as	file	owner	
regardless	of	who	runs	it

– Ignored	for	everything	else

– In	10-character	display,	replaces	the	4th character	(x or	-)	with	s (or	S
if	not	also	executable)

-rwsr-xr-x:	setuid,	executable	by	all

-rwxr-xr-x:	executable	by	all,	but	not	setuid

-rwSr--r--:	setuid,	but	not	executable	- not	useful

Root

• “root”	account	is	a	super-user	account,	like	Administrator	on	Windows

• Multiple	roots	possible

• File	permissions	do	not	restrict	root

• This	is	dangerous,	but	necessary,	and	OK	with	good	practices

Becoming	Root

• su

– Changes	home	directory,	PATH,	and	shell	to	that	of	root,	but	doesn’t	touch	most	of	environment	

and	doesn’t	run	login	scripts

• su -

– Logs	in	as	root	just	as	if	root	had	done	so	normally

• sudo <command>

– Run	just	one	command	as	root

• sudo -s

– Runs	a	shell	as	root

• su [-]	<user>

– Become	another	non-root	user

– Root	not	required	to	enter	password

Changing	Permissions

• Permissions	are	changed	with	chmod or	through	a	GUI	

• Only	the	file	owner	or	root	can	change	permissions

• If	a	user	owns	a	file,	the	user	can	use	chgrp to	set	its	group	to	

any	group	of	which	the	user	is	a	member

• root	can	change	file	ownership	with	chown (and	can	optionally	

change	group	in	the	same	command)

• chown,	chmod,	and	chgrp can	take	the	-R	option	to	recurse

through	subdirectories

Examples	of	Changing	Permissions

Sets	the	setuid	bit	on	file1.	

(Doesn’t	change	execute	bit.)

chmod	u+s	file1

Sets	file1’s	group	to	testgrp,	if	the	

user	is	a	member	of	that	group

chgrp	testgrp	file1

Adds	group	read/write	permission	to	

dir1	and	everything	within	it,	and	group	

execute	permission	on	files	or	

directories	where	someone	has	execute	

permission

chmod	-R	g=rwX	dir1

Adds	group	write	permission	to	

file1	and	file2,	denying	all	access	

to	others

chmod	g+w,o-rwx	file1	file2

Changes	ownership	of	dir1	and	

everything	within	it	to	root

chown	-R	root	dir1

