Lecture 15 — Access Control

Stephen Checkoway
University of Illlinois at Chicago
CS 487 — Fall 2017
Slides based on Bailey’s ECE 422

Authentication vs Authorization

Authentication — Who goes there?

— Restrictions on who (or what) can access system

Authorization — Are you allowed to do that?
— Restrictions on actions of authenticated users

Authorization is a form of access control
Authorization enforced by

— Access Control Lists
— Capabilities

Access Control

* Access control is a collection of methods and components that
supports

— confidentiality
— integrity

* Goal: allow only authorized subjects to access permitted
objects

* E.g., Least privilege philosophy

— A subject is granted permissions needed to accomplish required tasks
and nothing more

Access Control Designs

* Access control designs define rules for users accessing files or
devices

 Three common access control designs
— Mandatory access control

— Discretionary access control
— Role-based access control

Mandatory Access Control (MAC)

It is a restrictive scheme that does not allow users to define
permissions on files, regardless of ownership.

Instead, security decisions are made by a central policy
administrator.

A common implementation is rule-based access control

— Subject demonstrates need-to-know in addition to proper security
clearance

— Need-to-know indicates that a subject requires access to object to
complete a particular task

Security-Enhanced Linux (SELinux) incorporates MAC

Discretionary Access Control

* Discretionary access control, or DAC, refers to a scheme where
users are given the ability to determine the permissions
governing access to their own files.

— DAC typically features the concept of both users and groups

— In addition, DAC schemes allow users to grant privileges on resources
to other users on the same system.

* Most common design in commercial operating systems
— Generally less secure than mandatory control
— Generally easier to implement and more flexible

Role-Based Access Control

* The role-based access control (RBAC) model can be viewed as
an evolution of the notion of group-based permissions in file
systems.

* An RBAC system is defined with respect to an organization,
such as company, a set of resources, such as documents, print
services, and network services, and a set of users, such as
employees, suppliers, and customers

e Uses a subject’s role or task to grant or deny object access

Visualizing Role Hierarchy

Chief Executive h
Officer

Chief Technology Chief Operating Chief Medical
Officer Officer Officer
Technical Administrative Department Nurse
Manager Manager Head Manager

A e

Lab Computer Customer -
[Technician] [Technician] [Accounian:] {Service Staff] [Physncnan} [urse]

Administrative Clinical
Staff Staff

Technical
Staff

Hospital
Staff

Example of Implementing Policy

Filesystem Access Control

Access Control Entries and Lists

* An Access Control List (ACL) for a resource (e.g., a file or folder)
is a list of zero or more Access Control Entries (ACEs)

* An ACE refers specifies that a certain set of accesses (e.g., read,
execute and write) to the resources is allowed or denied for a
user or group

 Examples of ACEs for folder “CS 487 Grades”
— Professor; Read; Allow
— Students; Read; Allow
— Professor; Write; Allow
— Students; Write; Deny

Linux File System

* Tree of directories (folders)

* Each directory has links to zero or more files or directories

— From a directory to a file

— The same file can have hard links from multiple directories, each with its own filename, but all sharing
owner, group, and permissions

— File deleted when no more hard links to it

— From a directory to a target file or directory

— Stores path to target, which is traversed for each access

— The same file or directory can have multiple symlinks to it

— Removal of symlink does not affect target

— Removal of target invalidates (but not removes) symlinks to it

— Analogue of Windows shortcut or Mac OS alias

Unix Permissions

Standard for all UNIXes

Every file is owned by a user and has an associated group
Permissions often displayed in compact 10-character notation
To see permissions, use

Permissions Examples (Regular Files)

-rW-r--r-- read/write for owner, read-only for
everyone else

-rW-r----- read/write for owner, read-only for
group, forbidden to others

-WX------ read/write/execute for owner,
forbidden to everyone else

-r--r--r-- read-only to everyone, including
owner

-FT'WXIr'wXrwx read/write/execute to everyone

Permissions for Directories

Permissions bits interpreted differently for directories

bit allows listing names of files in directory, but not their properties like size
and permissions

bit allows creating and deleting files within the directory
bit allows entering the directory and getting properties of files in the
directory
Lines for directories in output begin with d, as below:

Permissions Examples (Directories)

drwxr-xr-x all can enter and list the directory,
only owner can add/delete files

drwxrwx--- full access to owner and group,
forbidden to others

drwx--x--- full access to owner, group can
access known filenames in
directory, forbidden to others

-rWXrwXrwx full access to everyone

Special Permission Bits

* Three other permission bits exist
(“suid” or “setuid”) bit
(“sgid” or “setgid”) bit

Set-user-I1D

Set-user-ID (“suid” or “setuid”) bit

— On executable files, causes the program to run as file owner
regardless of who runs it

— Ignored for everything else

— In 10-character display, replaces the 4t character (x or -) with s (or S
if not also executable)

: setuid, executable by all
: executable by all, but not setuid
: setuid, but not executable - not useful

Root

“root” account is a super-user account, like Administrator on Windows
Multiple roots possible
File permissions do not restrict root

This is dangerous, but necessary, and OK with good practices

Becoming Root

Changes home directory, PATH, and shell to that of root, but doesn’t touch most of environment
and doesn’t run login scripts

Logs in as root just as if root had done so normally
Run just one command as root

Runs a shell as root

Become another non-root user

Root not required to enter password

Changing Permissions

Permissions are changed with chmod or through a GUI
Only the file owner or root can change permissions

If a user owns a file, the user can use chgrp to set its group to
any group of which the user is a member

root can change file ownership with chown (and can optionally
change group in the same command)

chown, chmod, and chgrp can take the -R option to recurse
through subdirectories

Examples of Changing Permissions

chown -R root dirl

Changes ownership of dirl and
everything within it to root

chmod g+w,o0-rwx filel file2

Adds group write permission to
filel and file2, denying all access
to others

chmod -R g=rwX dirl

Adds group read/write permission to
dirl and everything within it, and group
execute permission on files or
directories where someone has execute
permission

chgrp testgrp filel

Sets filel’s group to testgrp, if the
user is a member of that group

chmod u+s filel

Sets the setuid bit on filel.
(Doesn’t change execute bit.)

