
Lecture	12	– Malware	Defenses

Stephen	Checkoway

University	of	Illinois	at	Chicago

CS	487	– Fall	2017

Slides	based	on	Bailey’s	ECE	422



Malware	review

• How	does	the	malware	start	running?

– Logic	bomb?

– Trojan	horse?

– Virus?

– Worm?



Malware	review

• What	does	the	malware	do?

– Wiper?

– Spyware?

– Ransomware?

– Rootkit?

– Dropper?

– Bot?



MALWARE	DEFENSES



Introduction

• Terminology

– IDS:	Intrusion	detection	system

– IPS:	Intrusion	prevention	system

– HIDS/NIDS:	Host/Network	Based	IDS

• Difference	between	IDS	and	IPS

– Detection	happens	after	the	attack	is	conducted	(i.e.	the	memory	is	
already	corrupted	due	to	a	buffer	overflow	attack)

– Prevention	stops	the	attack	before	it	reaches	the	system	(i.e.	shield	does	
packet	filtering)

– Some	tools	do	both	(e.g.,	Snort)

• Anomaly	vs.	Misuse,	Rule-based



Signatures:	A	Malware	Countermeasure

• Scan	and	compare	the	analyzed	object	with	a	database	of	
signatures

• A	signature	is	a	virus	fingerprint

– E.g.,	a	string	with	a	sequence	of	instructions	specific	for	each	virus

– Different	from	a	digital	signature

• A	file	is	infected	if	there	is	a	signature	inside	its	code	

– Fast	pattern	matching	techniques	to	search	for	signatures

• All	the	signatures	together	create	the	malware	database	that	
usually	is	proprietary



White/Black	Listing

• Maintain	database	of	cryptographic	hashes	for

– Operating	system	files

– Popular	applications

– Known	infected	files

• Compute	hash	of	each	file

• Look	up	into	database

• Needs	to	protect	the	integrity	of	the	database



Heuristic	Analysis

• Useful	to	identify	new	and	“zero	day”	malware

• Code	analysis

– Based	on	the	instructions,	the	antivirus	can	determine	whether	or	not	the	
program	is	malicious,	i.e.,	program	contains	instruction	to	delete	system	
files,

• Execution	emulation

– Run	code	in	isolated	emulation	environment

– Monitor	actions	that	target	file	takes

– If	the	actions	are	harmful,	mark	as	virus	

• Heuristic	methods	can	trigger	false	alarms



SDBot

• Via	manual	inspection	find	all	SDBot	variants,	and	alias	detected	by	McAfee,	

ClamAV,	F-Prot	



Properties	of	a	good	labeling	system

• Consistency. Identical	items	must	and	similar	items	should	be	assigned	

the	same	label

• Completeness. A	label	should	be	generated	for	as	many	items	as	

possible



Consistency	example

Binary McAfee F-Prot Trendmicro

01d2352fd33c92c6acef8b583f769a9f pws-banker.dldr troj_banload w32/downloader

01d28144ad2b1bb1a96ca19e6581b9d8 pws-banker.dldr troj_dloader w32/downloader

Inconsistent

Consistent



Consistency

• The	percentage	of	time	two	binaries	classified	as	the	same	by	one	AV	system	are	
classified	the	same	by	other	AV	systems.	

• AV	system	labels	are	inconsistent

AV McAfee F-Prot ClamAV Trend Symantec

McAfee 100 13 27 39 59

F-Prot 50 100 96 41 61

ClamAV 62 57 100 34 68

Trend 67 18 25 100 55

Symantec 27 7 13 14 100



Completeness

• The	percentage	of	malware	samples	detected	across	datasets	and	AV	vendors

• AV	system	labels	are	incomplete

Dataset AV Updated Percentage of Malware Samples Detected

McAfee F-Prot ClamAV Trend Symantec

legacy 20 Nov 2006 100 99.8 94.8 93.73 97.4

small 20 Nov 2006 48.7 61.0 38.4 54.0 76.9

small 31 Mar 2007 67.4 68.0 55.5 86.8 52.4

large 31 Mar 2007 54.6 76.4 60.1 80.0 51.5

.	



Antivirus	Vulnerabilities

Antivirus	engines	vulnerable	to	

numerous	local	and	remote	exploits

(number	of	vulnerabilities	reported	in	NVD	from	Jan.	2005	to	Nov.	2007)



Concealment

• Encrypted	virus

– Decryption	engine	+	encrypted	body	

– Randomly	generate	encryption	key

– Detection	looks	for	decryption	engine

• Polymorphic	virus

– Encrypted	virus	with	random	variations	of	the	decryption	engine	(e.g.,	

padding	code)

– Detection	using	CPU	emulator

• Metamorphic	virus

– Different	virus	bodies

– Approaches	include	code	permutation	and	instruction	replacement

– Challenging	to	detect





Encrypted	Virus	Propagation	



Arms	Race:	Polymorphic	Code	

• Given	polymorphism,	how	might	we	then	detect	viruses?	

• Idea	#1:	use	narrow	sig.	that	targets	decryptor

– Issues?

• Less	code	to	match	against	=	more	false	positives	

• Virus	writer	spreads	decryptor across	existing	code	

• Idea	#2:	execute	(or	statically	analyze)	suspect	code	to	see	if	it	decrypts!	

– Issues?	

• Legitimate	“packers”	perform	similar	operations	(decompression)	

• How	long	do	you	let	the	new	code	execute?	

– If	decryptor only	acts	after	lengthy	legit	execution,	difficult	to	spot	



Metamorphic	Code	

• Idea:	every	time	the	virus	propagates,	generate	semantically	
different	version	of	it!	
– Different	semantics	only	at	immediate	level	of	execution;	higher-level	
semantics	remain	same	

• How	could	you	do	this?

• Include	with	the	virus	a	code	rewriter:	
– Inspects	its	own	code,	generates	random	variant,	e.g.	

– Renumber	registers	

– Change	order	of	conditional	code	

– Reorder	operations	not	dependent	on	one	another	

– Replace	one	low-level	algorithm	with	another	

– Remove	some	do-nothing	padding	and	replace	with	different	do- nothing	
padding	(“chaff”)	



Detecting	Metamorphic	Viruses?	

• Need	to	analyze	execution	behavior
– Shift	from	syntax	(appearance	of	instructions)	to	semantics	(effect	of	instructions)	

• Two	stages:	(1)	AV	company	analyzes	new	virus	to	find	behavioral	signature;	(2)	
AV	software	on	end	systems	analyze	suspect	code	to	test	for	match	to	signature	

• What	countermeasures	will	the	virus	writer	take?	
– Delay	analysis	by	taking	a	long	time	to	manifest	behavior	

• Long	time	=	await	particular	condition,	or	even	simply	clock	time

– Detect	that	execution	occurs	in	an	analyzed	environment	and	if	so	behave	differently
• E.g.,	test	whether	running	inside	a	debugger,	or	in	a	Virtual	Machine	

• Counter-countermeasure?
– AV	analysis	looks	for	these	tactics	and	skips	over	them	

• Note:	attacker	has	edge	as	AV	products	supply	an	oracle!



Anomaly-Based	HIDS

• Idea	behind	HIDS

– Define	normal	behavior	for	a	process

• Create	a	model	that	captures	the	behavior	of	a	program	during	normal	

execution.

• Usually	monitor	system	calls

– Monitor	the	process

• Raise	a	flag	if	the	program	behaves	abnormally



Why	System	Calls?	(Motivation)

• The	program	is	a	layer	between	user	inputs	and	the	operating	

system

• A	compromised	program	cannot	cause	significant	damage	to	

the	underlying	system	without	using	system	calls

• e.g.,	Creating	a	new	process,	accessing	a	file



Model	Creation	Techniques

• Models	are	created	using	two	different	methods:

– Training:	The	program’s	behavior	is	captured	during	a	training	period,	

in	which,	there	is	assumed	to	be	no	attacks.	Another	way	is	to	craft	

synthetic	inputs	to	simulate	normal	operation.	

– Static	analysis:	The	information	required	by	the	model	is	extracted	

either	from	source	code	or	binary	code	by	means	of	static	analysis.

• Training	is	easy,	however,	the	model	may	miss	some	of	the	

behavior	and	therefore	produce	false	positives.



N-Gram

• Forrest	et	al.	A	Sense	of	Self	for	Unix	Processes,	1996.

• Tries	to	define	a	normal	behavior	for	a	process	by	using	sequences	
of	system	calls.

• As	the	name	of	their	paper	implies,	they	show	that	fixed	length	
short	sequences	of	system	calls	are	distinguishing	among	
applications.

• For	every	application	a	model	is	constructed	and	at	runtime	the	
process	is	monitored	for	compliance	with	the	model.

• Definition:	The	list	of	system	calls	issued	by	a	program	for	the	
duration	of	its	execution	is	called	a	system	call	trace.



N-Gram:	Building	the	Model	by	Training

• Slide	a	window	of	length	N	over	a	given	system	call	trace	and	

extract	unique	sequences	of	system	calls.

Example:

System	Call	traceUnique	Sequences Database



N-Gram:	Monitoring

• Monitoring

– A	window	is	slid	across	the	system	call	trace	as	the	program	issues	

them,	and	the	sequence	is	searched	in	the	database.

– If	the	sequence	is	in	the	database	then	the	issued	system	call	is	valid.

– If	not,	then	the	system	call	sequence	is	either	an	intrusion	or	a	

normal	operation	that	was	not	observed	during	training	(false	

positive)	!!



Experimental	Results	for	N-Gram

• Databases	for	different	processes	with	different	window	sizes	are	constructed

• A	normal	sendmail system	call	trace	obtained	from	a	user	session	is	tested	
against	all	processes	databases.

• The	table	shows	that	sendmail’s sequences	are	unique	to	sendmail and	are	
considered	as	anomalous	by	other	models.

The	table	shows	the	number	of	mismatched	

sequences	and	their	percentage	with	respect	to	

the	total	number	of	subsequences	in	the	user	

session


