
Lecture 09 – Code reuse

attacks
Stephen Checkoway

University of Illinois at Chicago

CS 487 — Fall 2017

Last time

• No good reason for stack/heap/static data to be executable

• No good reason for code to be writable

- An exception to this would be a JIT

• Data Execution Prevention (DEP) or W ^ X gives us exactly that

- A page of memory can be writable

- A page of memory can be executable

- No page can ever be both

- (Pages can be neither writable nor executable, of course)

computation +																										control

shellcode (aka payload) padding &buf

Think like an attacker

• We (as attackers) are now prevented from executing any injected code

• We still want to perform our computation

• We talked about how to bypass stack canaries last time, so let’s ignore

them for now and focus on bypassing DEP

• If we can’t execute injected code, what code should we execute?

Existing code in binaries

• Program code itself

• Dynamic libraries

- Google Chrome 61.0.3163.91 links to 99 dynamic libraries!

- libc is linked into (almost) every program

• libc contains useful functions

- system — Run a shell command

- mprotect — Change the memory protection on a region of code

Return to libc (ret2libc)

• Rather than returning to our shellcode, let’s return to a standard library

function like system

• We need to set the stack up precisely how system expects 

 

int system(const char *command);

Simple example

• Consider

• Let’s overwrite the saved eip with the

address of system  

void foo(char *evil) {

 char buf[32];

 strcpy(buf, evil);

}

…

evil

saved eip

saved ebp

buf

evil

&buf

…
esp !

Simple example

• Consider

• Let’s overwrite the saved eip with the

address of system  

void foo(char *evil) {

 char buf[32];

 strcpy(buf, evil);

}

…

evil

&system

buf

evil

&buf

…
esp !

Simple example

• Consider

• Let’s overwrite the saved eip with the

address of system

• system takes one argument, a

pointer to the command string; where

does it go?

void foo(char *evil) {

 char buf[32];

 strcpy(buf, evil);

}

…

evil

&system

buf

evil

&buf

…
esp !

Back to basics

• Imagine we called system directly via  

system(command);

• Look at the stack layout before the

first instruction in system

• As usual, the first argument is at  

esp + 4

esp !

…

command

saved eip

…

Simple example

• Consider

• Let’s overwrite the saved eip with the

address of system

• system takes one argument, a

pointer to the command string; where

does it go? esp + 4 after the ret

void foo(char *evil) {

 char buf[32];

 strcpy(buf, evil);

}

…

evil

&system

buf

evil

&buf

…
esp !

Simple example

• ret pops the address of system off

the stack and into eip leaving the

stack pointer pointing at the first

evil

• 4 bytes above that should be our

pointer to the command string

…

evil

&system

buf

evil

&buf

…

esp !

Simple example

• ret pops the address of system off

the stack and into eip leaving the

stack pointer pointing at the first

evil

• 4 bytes above that should be our

pointer to the command string

• Where should we put the command

string "sh" itself?

- In buf?

- Above the pointer to the command

string?

…

&cmd string

???

&system

buf

evil

&buf

…

esp !

Simple example

• ret pops the address of system off

the stack and into eip leaving the

stack pointer pointing at the first

evil

• 4 bytes above that should be our

pointer to the command string

• Where should we put the command

string "sh" itself?

- In buf?

- Above the pointer to the command

string?

…

"sh"

&cmd string

???

&system

buf

evil

&buf

…

esp !

Simple example

• When system returns, it'll return to

the address on the stack at esp

(the ???)

• This will likely crash unless we pick a

good value to put there

…

"sh"

&cmd string

???

&system

buf

evil

&buf

…

esp !

Simple example

• When system returns, it'll return to

the address on the stack at esp

(the ???)

• This will likely crash unless we pick a

good value to put there

• The address of exit is a good choice

• Now when system returns, the

program will exit

…

"sh"

&cmd string

&exit

&system

buf

evil

&buf

…

esp !

Injecting code

• We cannot run injected code directly, but

we can first make it executable by calling

mprotect  

 
int mprotect(void *addr,  
 size_t len,  
 int prot);

• This can be tricky since there are likely to

be zero bytes

- Use memcpy instead of strcpy

- Use return-oriented programming (next

class)

…

code

RWX

code_len

&code

&code

&mprotect

…

esp !

Injecting code

• Return to mprotect

…

code

RWX

code_len

&code

&code

&mprotect

…

esp !

Injecting code

• Return to mprotect

- Increments esp by 4

- Runs mprotect making the injected

code executable

- Modifies the stack below esp

…

code

RWX

code_len

&code

&code

…

esp !

Injecting code

• Return to mprotect

- Increments esp by 4

- Runs mprotect making the injected

code executable

- Modifies the stack below esp

• Return from mprotect to code

…

code

RWX

code_len

&code

&code

…

esp !

Injecting code

• Return to mprotect

- Increments esp by 4

- Runs mprotect making the injected

code executable

- Modifies the stack below esp

• Return from mprotect to code

- Increments esp by 4

- Runs code

…

code

RWX

code_len

&code

&code

…

esp !

eip !

Chaining functions

• We can chain two functions together if

- the first has one argument and the

second any number of arguments

g argn

...

g arg2

g arg1

f arg1

&g

&f
esp !

Chaining functions

• We can chain two functions together if

- the first has one argument and the

second any number of arguments; or

- the first has any number of arguments

and the second has none

f argn

...

f arg2

f arg1

&g

&f
esp !

Chaining functions

• We can chain two functions together if

- the first has one argument and the

second any number of arguments; or

- the first has any number of arguments

and the second has none

• We can start with any number of zero

argument functions for either case

f argn

...

f arg2

f arg1

&g

&f

&funm

...

&fun2

&fun1esp !

g argn

...

g arg2

g arg1

f arg1

&g

&f

&funm

...

&fun2

&fun1

Cleaning up between

• What if we want to chain the four function

calls fun1(t), fun2(u,v), fun3(w,x,y), fun4(z)?

• Identify pieces of code that clean up the

stack and return to those between function

calls

• Examples:

- popl %ebp; ret

- popl %ebx; popl %ebp; ret

- addl $16, %esp; ret

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

&fun1

popl %ebp

ret
esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

&fun1

popl %ebp

ret
esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

popl %ebp

ret
esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

←eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

←eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2

z

&fun4

y

x

w

&fun3

v

u

&fun2

t

popl %ebp

ret

esp !
popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

z

&fun4

y

x

w

&fun3

v

u

popl %ebp

ret

esp !
popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

z

&fun4

y

x

w

&fun3

v

u

popl %ebp

ret

esp !
popl %ebx

popl %ebp

ret

addl $16, %esp

ret

←eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

z

&fun4

y

x

w

&fun3

v

u

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

←eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

z

&fun4

y

x

w

&fun3

v

u

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

←eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3

z

&fun4

y

x

w

&fun3

v

u

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

z

&fun4

y

x

w

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

6. Return to add; ret

z

&fun4

y

x

w

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

6. Return to add; ret

z

&fun4

y

x

w

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

eip

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

6. Return to add; ret

7. Return to fun4

z

&fun4

y

x

w

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

6. Return to add; ret

7. Return to fun4 which runs, modifies stack

z

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Running

1. Return to fun1 which runs, modifies stack

2. Return to pop; ret

3. Return to fun2 which runs, modifies stack

4. Return to pop; pop; ret

5. Return to fun3 which runs, modifies stack

6. Return to add; ret

7. Return to fun4 which runs, modifies stack

8. Et cetera

z

popl %ebp

ret

esp !

popl %ebx

popl %ebp

ret

addl $16, %esp

ret

Cleanup code

• Two key pieces

- Stack modification (pop or add esp). Modifies the stack pointer to move

over the arguments to the function

- Return at the end. Returns to the next function whose address is on the

stack

• Together, this lets us chain a more or less arbitrary number of function

calls with constant parameters

- Depends on how much stack space we have (but we can change the

stack pointer via a sequence like xchgl %eax, %esp; ret)

- Depends on what cleanup code we can find in the program/libraries

(turns out there's a whole lot there)

Next time

• There's no need to limit ourselves to returning to functions and cleanup

code

• We can encode arbitrary computation (including conditionals and loops)

by returning to sequences of code ending in ret

