
Lecture	08	– Control-flow	Hijacking	Defenses

Stephen	Checkoway

University	of	Illinois	at	Chicago

CS	487	– Fall	2017

Slides	adapted	from	Miller,	Bailey,	and	Brumley

Control	Flow	Hijack:	

Always	control	+	computation

computation +																										control

shellcode (aka payload) padding &buf

2

• code	injection

• return-to-libc

• Heap	metadata	overwrite

• return-oriented	programming

• ...

Same	principle,

different	mechanism

Control	Flow	Hijacks

…	happen	when	an	attacker	gains	control	of

the	instruction	pointer.	

Two	common	hijack	methods:

• buffer	overflows

• format	string	attacks

3

Control	Flow	Hijack	Defenses

Bugs	are	the	root	cause	of	hijacks!

• Find	bugs	with	analysis	tools

• Prove	program	correctness

Mitigation	Techniques:

• Canaries

• Data	Execution	Prevention/No	eXecute

• Address	Space	Layout	Randomization

4

CANARY	/	STACK	COOKIES

http://en.wikipedia.org/wiki/File:Domestic_Canary_-_Serinus_canaria.jpg
5

…

argv

argc

return addr

caller’s	ebp

buf

(64 bytes)

argv[1]

buf

“A”x68	.	“\xEF\xBE\xAD\xDE”
#include<string.h>

int main(int argc, char **argv) {

char buf[64];

strcpy(buf, argv[1]);

}

Dump of assembler code for function main:

0x080483e4 <+0>: push %ebp

0x080483e5 <+1>: mov %esp,%ebp

0x080483e7 <+3>: sub $72,%esp

0x080483ea <+6>: mov 12(%ebp),%eax

0x080483ed <+9>: mov 4(%eax),%eax

0x080483f0 <+12>: mov %eax,4(%esp)

0x080483f4 <+16>: lea -64(%ebp),%eax

0x080483f7 <+19>: mov %eax,(%esp)

0x080483fa <+22>: call 0x8048300 <strcpy@plt>

0x080483ff <+27>: leave

0x08048400 <+28>: ret

6

%ebp

%esp
6

…

argv

argc

return addr

caller’s	ebp

buf

(64 bytes)

argv[1]

buf

0xDEADBEEF

AAAA

A
A
A
A
…
	(
6
4
	i
n
	t
o
ta
l)

“A”x68	.	“\xEF\xBE\xAD\xDE”
#include<string.h>

int main(int argc, char **argv) {

char buf[64];

strcpy(buf, argv[1]);

}

Dump of assembler code for function main:

0x080483e4 <+0>: push %ebp

0x080483e5 <+1>: mov %esp,%ebp

0x080483e7 <+3>: sub $72,%esp

0x080483ea <+6>: mov 12(%ebp),%eax

0x080483ed <+9>: mov 4(%eax),%eax

0x080483f0 <+12>: mov %eax,4(%esp)

0x080483f4 <+16>: lea -64(%ebp),%eax

0x080483f7 <+19>: mov %eax,(%esp)

0x080483fa <+22>: call 0x8048300 <strcpy@plt>

0x080483ff <+27>: leave

0x08048400 <+28>: ret

7

%ebp

%esp

corrupted

overwritten

overwritten

7

StackGuard

Idea:

• prologue	introduces	a	

canary	word between	return	

addr and	locals

• epilogue	checks	canary	

before	function	returns

Wrong	Canary	=>	Overflow

[Cowen	etal.	1998]

…

arg 2

arg 1

return addr

caller’s	ebp

callee-save

CANARY

locals

%ebp

%esp
8

return addr

caller’s	ebp

CANARY

buf

(64 bytes)

gcc Stack-Smashing	Protector	(ProPolice)
Dump of assembler code for function main:

0x08048440 <+0>: push %ebp

0x08048441 <+1>: mov %esp,%ebp

0x08048443 <+3>: sub $76,%esp

0x08048446 <+6>: mov %gs:20,%eax

0x0804844c <+12>: mov %eax,-4(%ebp)

0x0804844f <+15>: xor %eax,%eax

0x08048451 <+17>: mov 12(%ebp),%eax

0x08048454 <+20>: mov 4(%eax),%eax

0x08048457 <+23>: mov %eax,4(%esp)

0x0804845b <+27>: lea -68(%ebp),%eax

0x0804845e <+30>: mov %eax,(%esp)

0x08048461 <+33>: call 0x8048350 <strcpy@plt>

0x08048466 <+38>: mov -4(%ebp),%edx

0x08048469 <+41>: xor %gs:20,%edx

0x08048470 <+48>: je 0x8048477 <main+55>

0x08048472 <+50>: call 0x8048340 <__stack_chk_fail@plt>

0x08048477 <+55>: leave

0x08048478 <+56>: ret

Compiled	with	v4.6.1:
gcc -fstack-protector -O1 …

9

Canary	should	be	HARD to	Forge

• Terminator	Canary

– 4	bytes:	0,CR,LF,-1	(low->high)

– terminate	strcpy(),	gets(),	…

• Random	Canary

– 4	random	bytes	chosen	at	load	time

– stored	in	a	guarded	page

– need	good	randomness

10

Ideas	for	defeating	stack	canaries?

• Use	targeted	write,	e.g.,	format	string

• Overwrite	data	pointer	first

• Overwrite	function	pointer	loaded	and	

used	from	higher	up	the	stack	

• memcpy buffer	overflow	with	fixed	canary

• Canary	leak

return addr

caller’s	ebp

CANARY

buf

(64 bytes)

Bypass:	Data	Pointer	Subterfuge

Overwrite	a	data	pointer	first…

int *ptr;

char buf[64];

memcpy(buf, user1);

*ptr = user2;

return addr

caller’s	ebp

CANARY

ptr

buf

(64 bytes)

12

Overwrite	function	pointer	higher	up

• Overflow	buffer	to	overwrite	fun	on	the	stack

• Tricky!	Compiler	can	load	fun	into	a	register	

before	strcpy (this	can	happen	with	

optimization)

• Works	better	with	structs with	function	

pointers	(e.g.,	OpenSSL)	or	C++	classes

void contrived(const char *user, void (*fun)(char *)) {

char buf[64];

strcpy(buf, user);

fun(buf);

}

fun

user

return addr

caller’s	ebp

CANARY

buf

(64 bytes)

memcpy/memmove with	fixed	canary

• Fixed	canary	values	like	00	0d	0a	ff (0,	CR,	NL,	-1)	are	designed	

to	terminate	string	operations	like	strcpy and	gets

• However,	they	are	trivial	to	bypass	with	memcpy vulnerabilities

Canary	leak	I:	two	vulnerabilities

• Exploit	one	vulnerability	to	read	the	value	of	the	canary

• Exploit	a	second	to	perform	a	buffer	overflow	on	the	stack,	

overwriting	the	canary	with	the	correct	value

Canary	leak	II:	pre-fork	servers

• Some	servers	fork	worker	processes	to	handle	connections

• In	the	main	server	process

– Establish	listening	socket

– Fork	all	the	workers;	if	any	die,	fork	a	new	one

• In	the	worker	process	(in	a	loop)

– Accept	a	connection	on	the	listening	socket

– Process	request

Canary	leak	II:	pre-fork	servers	

• This	design	interacts	poorly	with	stack	canaries

• Since	each	worker	is	forked	from	the	main	process,	it	initially	

has	exactly	the	same	memory	layout	and	contents,	including	

stack	canary	values!

• Attacker	can	often	learn	the	canary	a	byte	at	a	time	by	

overflowing	just	a	single	byte	of	the	canary,	trying	values	00	

through	ff until	it	doesn’t	crash;	then	move	on	to	the	next	byte

What	is	“Canary”?

Wikipedia:	“the	historic	practice	of	using	canaries	in	coal	mines,	since	they	would	be	

affected	by	toxic	gases	earlier	than	the	miners,	thus	providing	a	biological	warning	

system.”

18

DATA	EXECUTION	PREVENTION	(DEP)	/	

NO	EXECUTE (NX)/

EXECUTE	DISABLED	(XD)/

EXECUTE	NEVER	(XN)

19

How	to	defeat	exploits?

computation +																										control

shellcode padding &buf

CanaryDEP

20

Memory	permissions

• Set	(or	clear)	a	bit	in	a	page	table	entry	to	prevent	code	from	

being	executed

• Enforced	by	hardware:	Trying	to	fetch	an	instruction	from	a	

page	marked	as	non-executable	causes	a	processor	fault

Data	Execution	Prevention

Mark	stack	as

non-executable

using	NX	bit

shellcode padding &buf

(still	a	Denial-of-Service	attack!)

CRASH

23

W	^	X

Each	memory	page	is

exclusively either

writable	or executable.

shellcode padding &buf

(still	a	Denial-of-Service	attack!)

CRASH

24

Actually	a	pretty	old	idea

• MIPS	R2000	(from	1986)	has	per-page	readable,	writable,	

executable	bits

• Intel	80386	(from	1985)	does	not.	Mapped	pages	are	always	

readable	and	executable

• Intel	80286	(from	1982)	introduced	16-bit	“protected	mode”	

where	code,	data,	and	stack	segments	can	be	separated

• The	386	has	a	32-bit	“protected	mode”	but	most	OSes	set	

code,	data,	and	stack	segments	to	be	the	entire	virtual	address	

space

Physical	Address	Extension

• Intel	added	an	extension	to	increase	the	size	of	allowable	

physical	memory	beyond	4	GB

• PAE	changed	the	page	table	format,	added	a	third	level	of	

translation,	and	added	the	execute	disable	bit	(but	the	OS	has	

to	enable	both	PAE	and	NX	support)

• x86-64	uses	the	PAE	format	and	thus	supports	NX

ADDRESS	SPACE	LAYOUT	

RANDOMIZATION

(ASLR)

27

addr of	buf

(0xffffd5d8)

caller’s	ebp

buf

S
h
e
ll
co
d
e

0xffffe3f8

0xffffe428

0xffffd5d8

addr of	buf

(0xffffd5d8)

caller’s	ebp

buf

buf[0]

buf[63]

S
h
e
ll
co
d
e

0xffffd5d8

Address	Space

Layout	

Randomization

0xffffd618

Oops…
28

ASLR

Traditional	exploits	need	precise	addresses

– stack-based	overflows: location	of	shell	code

– return-to-libc: library	addresses	(we’ll	talk	about	this	next	time)

• Problem:	program’s	memory	layout	is	fixed

– stack,	heap,	libraries	etc.

• Solution:	randomize	addresses	of	each	region!

29

Image	source:	http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Running	cat Twice

• Run	1

• Run	2

31

Bits	of	randomness	(32-bit	x86)

• Depends	on	the	OS,	but	roughly

– Program	code	and	data:	0	bits	(fixed	addresses)

– Heap:	13	bits	(2^13	possible	start	locations)

– Stack:	19	bits	(2^19	possible	start	locations)

– Libraries:	8	bits	(2^8	possible	start	locations)

• With	position-independent	executables	(PIE)

– Program	code	and	data:	8	bits

– Others	the	same

• 64-bit	has	much	more	randomness

Support	for	ASLR	added	over	time

• Initially	by	the	PaX team	for	Linux

• All	major	OSes	support	it	for	applications

• Kernel	ASLR	now	supported	by	major	OSes

Is	DEP	+	ASLR	a	panacea?

• Not	really

• Next	time:	DEP	bypass	via	code	reuse	attacks

• How	can	we	bypass	ASLR?

Image	source:	http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Bypassing	ASLR

• Older	Linux	would	let	local	attackers	read	the	stack	start	

address	from	/proc/<pid>/stat

• Non-PIE	binaries	have	fixed	code	and	data	addresses

• Each	region	has	a	random	offset,	but	fixed	layout	=>	learning	a	

single	address	in	a	region	gives	every	address	in	the	region

• Servers	that	re-spawn	(even	with	new	randomization)	can	be	

brute	forced	when	number	of	bits	of	randomness	is	low

