
Lecture	05 – Integer	overflow
Stephen	Checkoway

University	of	Illinois at	Chicago



Unsafe	functions	in	libc

• strcpy

• strcat

• gets

• scanf family	(fscanf,	sscanf,	etc.)	(rare)

• printf family	(more	about	these	later)

• memcpy (need	to	control	two	of	the	three	parameters)

• memmove (same	as	memcpy)



Replacements

• Not	actually	safe;	doesn’t	do	what	you	think

• strncpy

• strncat

• Available	on	Windows	in	C11	Annex	K	(the	optional	part	of	C11)

• strcpy_s

• strcat_s

• BSD-derived,	moderately	widely	available,	including	Linux	kernel	but	
not	glibc

• strlcpy

• strlcat



Buffer	overflow	vulnerability-finding	strategy

1. Look	for	the	use	of	unsafe	functions

2. Trace	attacker-controlled	input	to	these	functions



Real-world	examples	from	my	own	research

• Voting	machine:	Sequoia	AVC	Advantage

• About	a	dozen	uses	of	strcpy,	most	checked	the	length	first

• One	did	not.	It	appeared	in	infrequently	used	code

• Configuration	file	with	fixed-width	fields	containing	NUL-terminated	strings,	
one	of	which	was	strcpy’d to	the	stack

• Remote	compromise	of	cars

• Lots	of	strcpy of	attacker-controlled	Bluetooth	data,	first	one	examined	was	
vulnerable

• memcpy of	attacker-controlled	data	from	cellular	modem



Reminder:	Think	like	an	attacker

• I	skimmed	some	source	code	for	a	client/server	protocol

• The	server	code	was	full	of	trivial	buffer	overflows	resulting	from	the	
attacker	not	following	the	protocol

• I	told	the	developer	about	the	issue,	but	he	wasn’t	concerned	
because	the	client	software	he	wrote	wouldn’t	send	too	much	data

• Most	people	don’t	think	like	attackers.



Three	flavors	of	integer	overflows

1. Truncation:	Assigning	larger	types	to	smaller	types
int i = 0x12345678;
short s = i;
char c = i;



Truncation	example

struct s {
unsigned short len;
char buf[];

};

void foo(struct s *p) {
char buffer[100];

if (p->len < sizeof buffer)

strcpy(buffer, p->buf);

// Use buffer

}

int main(int argc, char *argv[]) {

size_t len = strlen(argv[0]);

struct s *p = malloc(len + 3);

p->len = len;

strcpy(p->buf, argv[0]);

foo(p);

return 0;

}



Three	flavors	of	integer	overflows

2. Arithmetic	overflow

• This	occurs	when	performing	arithmetic	operations	produces	a	value	which	is	
too	large	to	fit	in	a	variable

• Ex.
unsigned int product = a * b;
unsigned int sum = a + b;
unsigned int difference = a - b;

• These	are	frequently	combined	with	the	third	type



Three	flavors	of	integer	overflow

3. Signedness bugs

• Compare	two	signed	integers,	assuming	nonnegativity
if (x < 100)
do_something();

• Compare	a	signed	and	unsigned	integer
if (size < sizeof buffer)
do_something();

• Treating	a	signed	negative	number	as	unsigned
void *p = malloc(size); // size < 0



Exploiting	integer	overflow

• Attacker	controls	the	value	of	an	integer	n	which	gets	used	in	multiple	
ways

• Comparisons	as	signed/unsigned,	4	bytes/2	bytes,	etc.

• Arithmetic	with	positive	n	produces	negative	result

• Arithmetic	with	negative	n	produces	positive	result

• Two’s	complement	integers	don’t	model	mathematical	integers	well

• Mathematical	integers:	If	x	>	0	and	y	>	0,	then	x*y	>	0

• Two’s	complement	integers:	15000000*500	=	-1089934592

• Programmers	are	used	to	thinking	about	mathematical	integers



OpenSSH integer	overflow

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp*sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

• nresp is	attacker-controlled	and	set	to	0x40000000	

• sizeof(char	*)	is	4	(on	ILP32	machines)

• nresp*sizeof(char*)	is	0	and	xmalloc	succeeds



Boeing	787	integer	overflow

“We	have	been	advised	by	Boeing	of	an	issue	identified	during	
laboratory	testing.	The	software	counter	internal	to	the	generator	
control	units	(GCUs)	will	overflow	after	248	days	of	continuous	
power,	causing	that	GCU	to	go	into	failsafe	mode.	If	the	four	main	
GCUs	(associated	with	the	engine	mounted	generators)	were	powered	
up	at	the	same	time,	after	248	days	of	continuous	power,	all	four	GCUs	
will	go	into	failsafe	mode	at	the	same	time,	resulting	in	a	loss	of	all	AC	
electrical	power	regardless	of	flight	phase.”

https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf



Defending	against	integer	overflow

• Use	appropriate	types:

• Need	a	size	or	a	count?	Use	size_t

• Need	a	specific	bit-width?	Use	uint8_t,	uint16_t,	uint32_t,	uint64_t,	etc.

• Need	an	integer	to	hold	a	pointer?	Use	intptr_t



Integer	overflow	checking	in	C	is	difficult

1 #include <stdlib.h>

2

3 int safe_add(int a, int b) {

4 if (a > 0 && b > 0) {

5 if (a + b <= 0)

6 abort();

7 } else if (a < 0 && b < 0) {

8 if (a + b >= 0)

9 abort();

10 }

11 return a + b;

12 }

1 safe_add:

2 movl 8(%esp), %eax

3 addl 4(%esp), %eax

4 ret



Undefined	behavior

• C	(and	C++)	have	a	wide	variety	of	undefined	behavior

• Signed	(but	not	unsigned)	integers	have	undefined	behavior	on	
overflow

• The	compiler	gets	to	assume	undefined	behavior	doesn’t	happen!

• Compiler	removes	dead	code 3 int safe_add(int a, int b) {

4 if (a > 0 && b > 0) {

5 if (a + b <= 0)

6 abort();

7 } else if (a < 0 && b < 0) {

8 if (a + b >= 0)

9 abort();

10 }

11 return a + b;

12 }



Correct	implementation	(I	hope)

1 #include <limits.h>

2 #include <stdlib.h>

3

4 int safe_add(int a, int b) {

5 if (a > 0 && b > INT_MAX - a)

6 abort();

7 if (a < 0 && b < INT_MIN - a)

8 abort();

9 return a + b;

10 }



Compiler	flags

• -fwrapv — Treat	signed	integers	as	having	two’s	complement	behavior

• -ftrapv — Trap	on	overflow,	broken	on	older	compilers	and	constants

• -fsanitize=undefined	— Undefined	behavior	sanitizer,	not	on	old	
compilers


