Exam 2 Review

Stephen Checkoway
University of lllinois at Chicago
CS 487 - Fall 2017

Format

e Two parts
- Partl:
> Fifty minutes, in-class
> Short answer questions
> Probably an attack problem
- Part ll:
> Ninety minutes, online
> Twenty multiple choice

* No notes

* Work alone (copying or sharing answers will result in failing the course)

Topics from first half

* Threat models
 Example attacks

« Memory layout

e Stack

» Buffer overflows

» Constructing shell code
 Integer overflow

e Format string attacks

 Code-reuse attacks

Defenses

Malware

Finding vulnerabilities
Passwords & authentication
Access control

Web & browser

Threat models

* Who are the attackers?
 What are their capabilities?
 What is their motivation?

* What is their level of access?

Example attacks

 Goto fail
* Shellshock

e Samy worm

Memory layout

« Stack (including argv and envp)

 Heap

Libraries
Code

Data

Stack

« Grows down (on most architectures)

e Stack pointer

 Frame pointer

* Return address (pushed to stack or stored in a register)
e Function arguments (on stack or in registers)

 Local variables

Buffer overflows

* Overwrite control data or code pointers
- On the stack

- On the heap

« Overwriting data used for control

Constructing shell code

 Want to call execve
- eax: Oxb
- ebx: pointer to "/bin/sh"
- ecx: pointer to NULL-terminated array of pointers to arguments
- edx: pointer to NULL-terminated array of pointers to environment
variables

* Avoiding zero bytes
- Sometimes you need to, sometimes you don't

Integer overflow

e Truncations
* Using the same data as both signed and unsigned

« Comparing signed and unsigned

Format string

e Using %n and %x
 %hhn

 Where do you put shell code?

Code-reuse attacks

* Return-to-libc
e Chaining return-to-libc calls
« Return-oriented programming (ROP)

« Constructing gadgets

Defenses

« Stack cookies (a.k.a. stack canaries)
« Data execution prevention (DEP)

« Address space layout randomization (ASLR)

Malware

 Infection type
- Virus
- worm
- trojan
- etc

e Attack
- wiper
- dropper
- bot
- ransomware

Finding vulnerabilities

 White box vs. black box
 Manual vs. automated
* Fuzzing

* Reverse engineering

Passwords & authentication

 What makes a good password
- Length, mostly

Salt

Rainbow tables

Password managers

One-time passwords

Two-factor authentication

Access control

Difference between authentication and authorization

Mandatory access control (MAC)

Discretionary access control (DAC)

Role-based access control (RBAC)

Web & browser

Threats to the web server
- Code injection (e.g., SQL injection)

Threats to the browser
- Running untrusted code in a sandbox

Threats to one page from another
- Same origin policy (SOP)

Cross-origin attacks
- CSRF

- XSS
- Defenses

Topics from second half

* Message Integrity » Certificates and Certificate

 Pseudorandom numbers Authorities

 Confidentiality/secrecy * Cryptocurrencies

+ Diffie-Hellman key agreement * Anonymity
» Digital signatures
* Public-key encryption

e Secure channel construction
(TLS/SSH/IPsec)

Message integrity

* Message Authentication Code (MAC)
Transmit a message along with an authentication tag: M || MAC(key, M)

Requires a shared key

Prevents tampering
HMAC HMAC(K,m) = H((K' & opad) | H ((K' & ipad) Hm))

Pseudorandom numbers

e Computationally indistinguishable from true random (desired property)

 Pseudorandom generator: Expands a small number of "true" random bits
into a large number of pseudorandom bits

« Useful wherever random numbers are needed (e.g., keys)
« Also useful when unpredictable numbers are needed (e.g., nonces)

* Difference between /dev/random and /dev/urandom

Confidentiality/secrecy

« Kerckhoff’s Principles, really just the important one (rephrased): the only
thing that should be sensitive in a crypto system is the key

* One-time pad (OTP): long, shared string of random bits; xor with message
- Must never reuse the random string

e Stream cipher: Replace the shared stream of bits in a OTP with a
pseudorandom generator with a shared key
- Must never reuse the key

» Block cipher: Process message in fixed-size blocks

* Block cipher modes: ECB, CBC, Counter (turns block cipher into a stream
cipher)

« AES (that it exists and is a block cipher, not how to implement it)

Diffie-Hellman key agreement

d

Alice Bob

Generates random Generates random

secret exponent a. secret value b.
g° b

-

gb

Computes x Computes x’

= (g°)° = (g?)°

— b —

=g a - gab

(Notice that x = x')
Can use k = hash(x) as a shared key.

Digital signatures

Public-key analogue to MAC

Sign with private key

Verify with public key

RSA: public key (e, N), private key (d, N), N = p*q, e*d = 1 mod (p-1)(g-1)
- Sign(m) = md mod N
- Verify(m, s) = if s mod N == m, then YES else NO

In real usage, messages are hashed and padded appropriately first

Public-key encryption

* Public-key analogue to symmetric encryption (block/stream ciphers)
* Encrypt with public key
» Decrypt with private key

 RSA: public key (e, N), private key (d, N), N = p*q, e*d = 1 mod (p-1)(g-1)
- Enc(m) = me mod N
- Dec(c) = cd mod N

* In real usage, messages are padded first

* Hybrid encryption: Encrypt a symmetric key using the public key, use the
symmetric key to encrypt the message (e.g., using AES). Transmit
encrypted key and encrypted message

Secure channel construction

* Both sides exchange random values (for replay protection), DH public
keys, and supported crypto algorithms

» Derive shared, unidirectional traffic keys (e.g., encryption and MAC keys
for Alice -> Bob and Bob -> Alice) from DH shared secret and random
values

 Exchange hashes of handshake messages (to prevent an adversary
downgrading the connection)

» Protect traffic with traffic keys

e In TLS, server proves identity by signing DH parameters; in IPsec
preshared keys are frequently used; in SSH "leap of faith" or "trust on first
use" (TOFU) authentication

Certificates and CAs

 Certificates contain public keys and identity information, signed by the
Issuer

 Certificate authority has root keys that are trusted by browser/OS

 Certificate chain: server cert (signed by intermediate CA cert)* signed by
root CA cert

* Browsers verify each cert in the chain until reaching a trusted cert

 |dentity validation:
- Domain validation (DV) cert: prove you control the domain by setting a
DNS record or hosting a file with a secret at a well-known location
- Extended validation (EV) cert: expensive, CA is supposed to really verify
identity, doesn't provide any greater cryptographic protection

Cryptocurrencies

 Pseudonymous digital currency
» Distributed transaction ledger

* Block chain: Each block links to the transactions in the block as well as to
the previous block in the chain by hashing

e Miners mine blocks by looking for a nonce such that
H(previous_block || transactions || nonce) = 0x00..0xx.x
that is, it has the appropriate number of leading zeros

« Mining difficulty increases over time

* Longest chain is authoritative; orphan blocks

Anonymity

* Nymity spectrum: verinymity, pseudonymity, linkable anonymity,
unlinkable anonymity

 Metadata: data about the communication, not including the content
* VVPN: proxies your traffic, but not really designed for privacy/anonymity
» Attackers will just use compromised machines

e Tor
- Build a circuit through nodes (usually three nodes)
- Each node in circuit knows previous node and next node
- No node knows both ends
- No encryption between exit node and destination server, use HTTPS

