
Exam 2 Review
Stephen Checkoway

University of Illinois at Chicago

CS 487 – Fall 2017

Format

• Two parts

- Part I:

‣ Fifty minutes, in-class

‣ Short answer questions

‣ Probably an attack problem

- Part II:

‣ Ninety minutes, online

‣ Twenty multiple choice

• No notes

• Work alone (copying or sharing answers will result in failing the course)

Topics from first half

• Threat models

• Example attacks

• Memory layout

• Stack

• Buffer overflows

• Constructing shell code

• Integer overflow

• Format string attacks

• Code-reuse attacks

• Defenses

• Malware

• Finding vulnerabilities

• Passwords & authentication

• Access control

• Web & browser

Threat models

• Who are the attackers?

• What are their capabilities?

• What is their motivation?

• What is their level of access?

Example attacks

• Goto fail

• Shellshock

• Samy worm

Memory layout

• Stack (including argv and envp)

• Heap

• Libraries

• Code

• Data

Stack

• Grows down (on most architectures)

• Stack pointer

• Frame pointer

• Return address (pushed to stack or stored in a register)

• Function arguments (on stack or in registers)

• Local variables

Buffer overflows

• Overwrite control data or code pointers

- On the stack

- On the heap

• Overwriting data used for control

Constructing shell code

• Want to call execve

- eax: 0xb

- ebx: pointer to "/bin/sh"

- ecx: pointer to NULL-terminated array of pointers to arguments

- edx: pointer to NULL-terminated array of pointers to environment
variables

• Avoiding zero bytes

- Sometimes you need to, sometimes you don't

Integer overflow

• Truncations

• Using the same data as both signed and unsigned

• Comparing signed and unsigned

Format string

• Using %n and %x

• %hhn

• Where do you put shell code?

Code-reuse attacks

• Return-to-libc

• Chaining return-to-libc calls

• Return-oriented programming (ROP)

• Constructing gadgets

Defenses

• Stack cookies (a.k.a. stack canaries)

• Data execution prevention (DEP)

• Address space layout randomization (ASLR)

Malware

• Infection type

- virus

- worm

- trojan

- etc

• Attack

- wiper

- dropper

- bot

- ransomware

Finding vulnerabilities

• White box vs. black box

• Manual vs. automated

• Fuzzing

• Reverse engineering

Passwords & authentication

• What makes a good password

- Length, mostly

• Salt

• Rainbow tables

• Password managers

• One-time passwords

• Two-factor authentication

Access control

• Difference between authentication and authorization

• Mandatory access control (MAC)

• Discretionary access control (DAC)

• Role-based access control (RBAC)

Web & browser

• Threats to the web server

- Code injection (e.g., SQL injection)

• Threats to the browser

- Running untrusted code in a sandbox

• Threats to one page from another

- Same origin policy (SOP)

• Cross-origin attacks

- CSRF

- XSS

- Defenses

Topics from second half

• Message Integrity

• Pseudorandom numbers

• Confidentiality/secrecy

• Diffie–Hellman key agreement

• Digital signatures

• Public-key encryption

• Secure channel construction
(TLS/SSH/IPsec)

• Certificates and Certificate
Authorities

• Cryptocurrencies

• Anonymity

Message integrity

• Message Authentication Code (MAC)

• Transmit a message along with an authentication tag: M || MAC(key, M)

• Requires a shared key

• Prevents tampering

• HMAC

Pseudorandom numbers

• Computationally indistinguishable from true random (desired property)

• Pseudorandom generator: Expands a small number of "true" random bits
into a large number of pseudorandom bits

• Useful wherever random numbers are needed (e.g., keys)

• Also useful when unpredictable numbers are needed (e.g., nonces)

• Difference between /dev/random and /dev/urandom

Confidentiality/secrecy

• Kerckhoff’s Principles, really just the important one (rephrased): the only
thing that should be sensitive in a crypto system is the key

• One-time pad (OTP): long, shared string of random bits; xor with message

- Must never reuse the random string

• Stream cipher: Replace the shared stream of bits in a OTP with a
pseudorandom generator with a shared key

- Must never reuse the key

• Block cipher: Process message in fixed-size blocks

• Block cipher modes: ECB, CBC, Counter (turns block cipher into a stream
cipher)

• AES (that it exists and is a block cipher, not how to implement it)

Diffie–Hellman key agreement

Digital signatures

• Public-key analogue to MAC

• Sign with private key

• Verify with public key

• RSA: public key (e, N), private key (d, N), N = p*q, e*d = 1 mod (p-1)(q-1)

- Sign(m) = md mod N

- Verify(m, s) = if se mod N == m, then YES else NO

• In real usage, messages are hashed and padded appropriately first

Public-key encryption

• Public-key analogue to symmetric encryption (block/stream ciphers)

• Encrypt with public key

• Decrypt with private key

• RSA: public key (e, N), private key (d, N), N = p*q, e*d = 1 mod (p-1)(q-1)

- Enc(m) = me mod N

- Dec(c) = cd mod N

• In real usage, messages are padded first

• Hybrid encryption: Encrypt a symmetric key using the public key, use the
symmetric key to encrypt the message (e.g., using AES). Transmit
encrypted key and encrypted message

Secure channel construction

• Both sides exchange random values (for replay protection), DH public
keys, and supported crypto algorithms

• Derive shared, unidirectional traffic keys (e.g., encryption and MAC keys
for Alice -> Bob and Bob -> Alice) from DH shared secret and random
values

• Exchange hashes of handshake messages (to prevent an adversary
downgrading the connection)

• Protect traffic with traffic keys

• In TLS, server proves identity by signing DH parameters; in IPsec
preshared keys are frequently used; in SSH "leap of faith" or "trust on first
use" (TOFU) authentication

Certificates and CAs

• Certificates contain public keys and identity information, signed by the
issuer

• Certificate authority has root keys that are trusted by browser/OS

• Certificate chain: server cert (signed by intermediate CA cert)* signed by
root CA cert

• Browsers verify each cert in the chain until reaching a trusted cert

• Identity validation:

- Domain validation (DV) cert: prove you control the domain by setting a
DNS record or hosting a file with a secret at a well-known location

- Extended validation (EV) cert: expensive, CA is supposed to really verify
identity, doesn't provide any greater cryptographic protection

Cryptocurrencies

• Pseudonymous digital currency

• Distributed transaction ledger

• Block chain: Each block links to the transactions in the block as well as to
the previous block in the chain by hashing

• Miners mine blocks by looking for a nonce such that 
H(previous_block || transactions || nonce) = 0x00..0xx.x  
that is, it has the appropriate number of leading zeros

• Mining difficulty increases over time

• Longest chain is authoritative; orphan blocks

Anonymity

• Nymity spectrum: verinymity, pseudonymity, linkable anonymity,
unlinkable anonymity

• Metadata: data about the communication, not including the content

• VPN: proxies your traffic, but not really designed for privacy/anonymity

• Attackers will just use compromised machines

• Tor

- Build a circuit through nodes (usually three nodes)

- Each node in circuit knows previous node and next node

- No node knows both ends

- No encryption between exit node and destination server, use HTTPS

