SSH, SSL, and IPsec:

Eric Rescorla
RTFM, Inc.

ekrO@rtfm.com

witf?

SSH, SSL, and IPsec

What are we trying to accomplish?

e Alice, Bob want to talk to each other

e But they're worried about attack
— How do you know you're talking to the right person?
— How do you know people can't listen to your conversation

— How do you know people can’t change your conversation?

e We want to build a system that protects against these attacks

Eric Rescorla SSH, SSL, and IPsec

Terminology Dump 1: Attacker Capabilities

Passive Attacker doesn't send anything.
Active Attacker is allowed to send traffic.

On-path Attacker is on the communications path between A and B.
e Sees all traffic

e Can seamlessly impersonate either side

Off-path Attacker is not on communications path between A and B
e Can't see traffic between A and B.

e Can sometimes send traffic as either (subject to address

filtering).

Eric Rescorla SSH, SSL, and IPsec

Terminology Dump 2: Security Properties

Confidentiality Information being transmitted is kept secret from
attackers

Data Origin Authentication Receivers can determine the origin of
traffic.

Message Integrity Tampering of traffic can be detected.

Third-party Verifiability A party not involved in the initial
communication can verify what happened. (Often misleadingly
called non-repudiation)

Eric Rescorla SSH, SSL, and IPsec

A simple problem: remote authentication

e You're a Web server

— X connects to you claiming to be Alice

— How can you tell?

e Assumptions:

— All you have is the network traffic

x Can send messages to X
*x Receive X's response

— Attackers can forge but not view, intercept, or modify traffic

— You have some prior relationship with Alice

Eric Rescorla SSH, SSL, and IPsec

Remote authentication: basic ideas

e Alice needs to be able to do something others can't do

— Generally, compute some function
*x But why can’t X do that?

e How do we break the symmetry?
— Give Alice more resources

— Give Alice some secret

Eric Rescorla SSH, SSL, and IPsec

One-sided authentication with shared secrets

e Assume Alice and Bob share a secret S,
— Alice needs to prove possession of S,

— (Assume Alice authenticates Bob some other way)

e Simple approach:
— Bob and Alice both store S,
— Alice sends Bob S,

— Bob does memcmp ().

Eric Rescorla SSH, SSL, and IPsec

Problems with the previous scheme

Snooping. an attacker who is on-path can capture the password and
replay it

Hijacking. an attacker can wait for you to exchange the password and
then take over the connection

One-way authentication. how does Alice authenticate Bob?

Eric Rescorla SSH, SSL, and IPsec 8

Fixing snooping

o Alice doesn’'t send S,; over the wire

— Instead she computes some function f

— And sends f(Sqp)

e What properties does f need?
1st Preimage Resistant hard to compute S, from f(Sup)
2nd Preimage Resistant hard to find S’ st f(S’) = f(Sas)

e Luckily, we have such functions

Eric Rescorla SSH, SSL, and IPsec

Cryptographic hash functions

e Basic idea: one-way function (also called message digests)

— Take an arbitrary length bit string m and reduce it to 100-200
(b) bits
— Hm)=nh
e Hash functions are preimage resistant

— Takes approximately 2° operations to find m given h

e Hash functions are collision resistant

— Takes approximately 2°/2 operations to find m, m’ st.
H(m) = H(m')

e Popular algorithms: MD5, SHA-1, SHA-256

Eric Rescorla SSH, SSL, and IPsec 10

Challenge-Response

e So, Alice just sends H(Sgp), right?
— Wrong
— This becomes the new secret

— So we still have a replay attack problem

e Bob needs to force Alice to compute a new function each time

Alice Bob

Challenge

H(Sap+Challenge)

e Challenge needs to be unique for every exchange

— Does not need to be unpredictable

Eric Rescorla SSH, SSL, and IPsec

11

Why mutual authentication?

e \We assumed that Alice was talking to Bob
— But how does Alice know that?
— She can't trust the network

— What if she's connecting to the attacker

Alice Attacker Bob

Challenge Challenge

H(Ssp+Challenge) H(Ssp+Challenge)

Attack Commands

e Alice has just logged in for the attacker

— He can issue any commands he wants (oops!)

Eric Rescorla SSH, SSL, and IPsec 12

Adding mutual authentication

e We already know how to authenticate Alice
— Now we need to authenticate Bob

— Just reverse the procedure

Alice Bob

Challengel

Challenge2
H(S.p+Challengel4+Challenge2)
H(Sqp+Challenge24+Challengel)

e Each side needs to control its own challenges

— Otherwise we have replay issues again

Eric Rescorla SSH, SSL, and IPsec

Hijacking

e This protocol still has a hijacking problem

Alice Attacker Bob
Challengel Challengel
Challenge2 Challenge2
H(S.p+Challengel+Challengel) H(S.p+Challengel+Challengel)
H(Sqp+Challenge24+Challengel) H(Sqp+Challenge24+Challengel)

Attack commands

e \\Ve need to authenticate the data

— Not just the initial handshake

Eric Rescorla SSH, SSL, and IPsec 14

Authenticating data

e Break the data into records
— Attach a message authentication code (MAC) to each record

— Receiver verifies MACs on record

Length

Eric Rescorla SSH, SSL, and IPsec

15

A message authentication code? Dude, wait, what?

e What's a MAC?
— A one-way function of the key and some data
— F(k,data) =
* x is short (80-200 bits)
*x Hard to compute = without k
x Hard to compute data even with k, x

e [his sounds kinda like a hash

— MACs are usually built from hashes
* World's simplest MAC: H(k + data) (this has problems)

e Popular MACs: HMAC

Eric Rescorla SSH, SSL, and IPsec 16

Where does the key come from?

e \We want a key that's unique to this connection
— And tied to both sides

— Get it from the challenge-response handshake

o First attempt: K = H (S, + Challengel + Challenge?2)
— But now the key is the same in both directions
— And the same as the challenge response!

— Allows reflection attacks

e Second attempt
— Kqp = H(Sap + 7 AB” + Challengel + Challenge?)
— Ky, = H(Sap +7"BA” + Challengel + Challenge?2)

Eric Rescorla SSH, SSL, and IPsec

17

World’s simplest security protocol
Alice Bob

Challengel

Challenge2
H(Sqp+Challengel4+Challenge2)
H(Sqp+Challenge24+Challengel)

Messagel, M AC

Message2, M AC

e Each side knows who the other is

e All messages are authenticated
— But they're not confidential

— So don't send any secret information

Eric Rescorla SSH, SSL, and IPsec

Symmetric Encryption

e We have two functions E, D st.
— E(k, Plaintext) = Ciphertext
— D(k, Ciphertext) = Plaintext
— These are easy to compute

— Either function is hard to compute without &

e Popular encryption algorithms: DES, 3DES, AES, RC4

Eric Rescorla SSH, SSL, and IPsec

A (mostly) complete channel security protocol

Alice Bob

Challengel

Challenge2
H(S.p+Challengel4+Challenge2)
H(S.p+Challenge2+Challengel)

E(kq—p,(Messagel, MAC))

E(kp—q,(Message2, M AC))

e Each side knows who the other is
e All messages are authenticated

e All messages are confidential

Eric Rescorla SSH, SSL, and IPsec

20

So, we’re done, right?

e How do Alice and Bob get S,;?

e Some out of band channel
— Send a letter—do you trust USPS?
— Meet in person—airplane tickets are expensive

— Guys with briefcases handcuffed to their wrists?

e All of these are pretty inconvenient

— We can do better

Eric Rescorla SSH, SSL, and IPsec

21

Diffie-Hellman Key Agreement

e Each side has two keys (“public” and “private™)
— You publish the public key but the private key is secret
- F(Ke, Kb .)=F(K", K%,)=2Z

pub’ *priv pub’ **pub
— You need at least one private key to compute ZZ

e This is crypto rocket science—but you don't need to understand
how it works

Eric Rescorla SSH, SSL, and IPsec

22

Using Diffie-Hellman

Alice Bob
Random1,K?

pub

b
RandomQ,Kpub

E(kg—p,(Messagel , MAC))

E(kp—q,(Message2, M AC))

e Each side sends its public key

e The other side combines its private key with the other side’s

public key to compute ZZ

e The traffic keys are generated from 22

Eric Rescorla SSH, SSL, and IPsec

23

Man-in-the-middle attack

Alice Attacker Bob
Random1,KJ, Randoml,Kﬁub
RandomZ,Kﬁub RandomQ,Kgub

E(kq—a,(Messagel, M AC)) E(ka_p,(Messagel, M AC))
E(ka—a,(Message2, M AC)) E(ky— a,(Message2, M AC))

e Each side thinks it's talking to the other

— This is what happens when you don't authenticate

e Alice and Bob need some way to authenticate each other’s public
keys

Eric Rescorla SSH, SSL, and IPsec 24

Digital Signatures

e Remember MACs?

e There's a public key version of this
— “Sign” with Ky
— “Verify” with K,

e A signed message can only be generated by someone who has the
private key

e Popular algorithms: RSA, DSA, ECDSA

Eric Rescorla SSH, SSL, and IPsec 25

Public key distribution

e Public key cryptography is one piece of the puzzle

— But only one piece

e | can verify a signature came from a given key

— But where do | get that key from?

e We could have a global directory

— Obvious scaling problems here

e What if | could give you a credential vouching for your public key?

Eric Rescorla SSH, SSL, and IPsec 26

Certificates

e Digital signatures let us do exactly that

e Create a central certificate authority (CA)
— Alice proves her identity to the CA
— The CA gives her a signed message “Alice’s public key is X" (a
certificate)
e Anyone can verify this certificate
— As long as they have the public key of the CA

— This key is compiled into the software

e Popular CAs: VeriSign, Thawte, GoDaddy

Eric Rescorla SSH, SSL, and IPsec 27

Diffie-Hellman with certificates

Alice Bob

Random1,Cert®

Random?2,Cert®

E(kg—p,(Messagel, MAC))

E(kp—a,(Message2, MAC))

e Certificates contain DH public keys

e Each side can authenticate the other
— This is actually a bug
— Certificates are too inconvenient for users to get
— And the user doesn’t always need to be authenticated

— Or is authenticated some other way

Eric Rescorla SSH, SSL, and IPsec

28

One-way authentication with PKC

e One side (server) has a certificate
e The other side (client) makes up a random key pair

Client Server

Random1,Cert?®

Random?2, K;ub

E(ke—s,(Credit card #,MAC))

E(ks—o,(OK,MAC))

e T his authenticates the server but not the client

e We can do a similar trick with RSA
— Encrypt with public key, decrypt with private key

e This is the main operational mode for SSL/TLS

Eric Rescorla SSH, SSL, and IPsec 29

Perfect Forward Secrecy

e What happens if one side’'s computer is compromised?
— Attacker gets private key

— (Can decode all communications by that side

e Fix: have certificates with signature keys (RSA, DSA)
— Generate a random DH key for each handshake

— Sign it with your signature key

e Compromise of private key doesn't affect past traffic

— But you can MITM future connections

e This is the main operational mode for IPsec

Eric Rescorla SSH, SSL, and IPsec

30

Algorithm negotiation

e There are a lot of choices here
— Who authenticates,
— Public key algorithm
— Digest algorithm
— Encryption algorithm

e Each make sense in some scenarios

— A good protocol is adaptable

e This means some kind of negotiation

— This needs to be protected to prevent downgrade attacks

Eric Rescorla SSH, SSL, and IPsec

A complete channel security protocol

Alice Bob

Random1,Algorithms

RandomQ,Algorithm,Certb

Cert* MAC(ZZ,HandshakeM sgs)

MAC(ZZ,HandshakeMsgs)

E(kq—p,(Messagel M AC))

E(kp—a,(Message2, MAC))

Eric Rescorla SSH, SSL, and IPsec

32

Secure Sockets Layer (SSL)

e Originally a Netscape proprietary protocol

e Target application: e-commerce
— What people thought the Web was for in 1994

— Objective: send my credit card to Amazon securely

e Basic principles (ca. 1994)
— The server is authenticated (via certificate)
— The client is unauthenticated

— This should be easy to plug in to both sides

Eric Rescorla SSH, SSL, and IPsec

33

SSL/TLS History (1)

e SSLv1 (never released)
— Designed by Kipp Hickman
— Severe security flaws (immediately obvious to anyone who
knew crypto)

o SSLv2
— Hickman again (after being beaten up by others)
— Modest security flaws (truncation attacks, downgrade)
— Very widely deployed
e SSLV3
— Freier, Karlton, Kocher

— Fixes the above problems

Eric Rescorla SSH, SSL, and IPsec

34

SSL/TLS History (2)

e Transport Layer Security (TLS) 1.0 (RFC 2246)
— First standardized version of SSL

— Modest improvements to key derivation

e TLS 1.1 (RFC 4346)

— Fixes for modest security flaws

e TLS 1.2 (RFC 5246)
— Flexibility for hash functions (thanks Dr. Wang!)

e As you can see, this is in maintenance mode

Eric Rescorla SSH, SSL, and IPsec

35

HTTP over SSL (HTTPS)

Client Server

TCP SYN

TCP SYN—-ACK

TCP ACK

SSL Handshake

HT'T'P Request

HT'TP Response

e The client knows that the server expects HTTPS
— It's in the URL https://www.example.com/

— It's on a separate port

e The server's certificate has its domain name (www.example.com)

Eric Rescorla SSH, SSL, and IPsec 36

SSL Session Resumption

e Asymmetric (private key) operations are expensive

— And HTTPS tends to involve a lot of SSL/TCP connections

e Caching pays off here
— Each handshake establishes a session
— Clients can resume the session with the same keying material

— Thus skipping the key exchange

Eric Rescorla SSH, SSL, and IPsec

37

Upward Negotiation

e What if the client and server don’t know each other’s capabilities
— Would be nice to discover them

— And automatically upgrade to TLS
e Example: SMTP

Client Server

HELO + TLS

OK do TLS

SSL Handshake

SMTP transaction

e Of course, this allows downgrade attacks

Eric Rescorla SSH, SSL, and IPsec

38

DoS Attacks on SSL/TLS

e Resource consumption

— Public key operations are expensive

* Client can force the server to do a lot of them
* But not blindly (TCP handshake)

— State on the server side

e SSL/TLS connection runs over TCP

— TCP connections are easy to DoS
— SSL/TLS can’t protect you from this

— Needs to be at a lower layer

Eric Rescorla SSH, SSL, and IPsec

39

Datagram TLS (RFC 4347)

e TLS requires a reliable channel
— The handshake is in sequence
— The data records depend on each other

— In practice this means TCP

e \What about unreliable channels?

— DTLS is a slight modification of TLS
— Reliability for the handshake

— Record independence

e More DoS resistance (more on this later)

Eric Rescorla SSH, SSL, and IPsec

40

Secure Shell (SSH)

e Originally designed by Tatu Ylonen
— Replacement for rsh
— Now the standard tool for secure remote login

— A lot of authentication mechanisms

e Other features
— Remote X
— File transfer

— Port forwarding

e Original version was seriously broken
— Later standardized versions are better

— Transport protocol looks a lot like TLS

Eric Rescorla SSH, SSL, and IPsec

41

SSH leap of faith authentication

e No certificates—server just has a raw public key
— The server provides the key when the client connects
— The client stores the server’'s key on first connection

— Any changes in the key are an error

e The key can be authenticated out of band

— The server operator tells the client the key fingerprint (hash)
over the phone

— But only the most paranoid people do this

e This was considered insanity at the time

— Now it's considered clever

Eric Rescorla SSH, SSL, and IPsec

42

Client

SSL Key Exchange Protocol

Protocol=SSH-—-2.0...

Server

Protocol=SSL—-2.0...

KeyFExInit(algorithms...)

KeyFExInit(algorithms....)

DH(group size)

p,g
DHZ .,
DH;uwSign(K;rw aDH;ub)

Eric Rescorla

SSH, SSL, and IPsec

43

SSH Client Authentication

e Server is authenticated first

e Client is then authenticated
— Raw password

— Challenge-response
— Public key
— GSS-API

— Kerberos

e Mechanisms are negotiated

Eric Rescorla SSH, SSL, and IPsec

Client

SSL Client Authentication

Auth: None

Protocol

Server

Auth: publickey,password,...

publickey=X X X

No

publickey=YYY

No

stgnature

OK

Eric Rescorla

SSH, SSL, and IPsec

45

Port Forwarding

e SSH provides a port forwarding feature

e Example: X11 remote

Server Client

|ocalhost:6000

A
localhost: X X X X

S$H S$H
Client Server

e SSH server does setenv DISPLAY localhost:XXXX

e Apps just automatically work

Eric Rescorla SSH, SSL, and IPsec

Secure Remote Shell

e SSH is backward compatible with rsh
— So other applications can be securely remoted

— Even without port forwarding

e Examples
— CVS
— rsync

— dump/restore

e Apps don't need security, just remote access

Eric Rescorla SSH, SSL, and IPsec

47

IPsec: IP Security

e Basic idea: secure IP datagrams

— Instead of at application layer like TLS or SSH

e Why was this considered a good idea?
— Secure all traffic, not just TCP/UDP

— Automatically secure applications

x Without any change to the application

— Built-in-firewalling /access control

Eric Rescorla SSH, SSL, and IPsec

48

IPsec history

e Work started in 1992-1993

e General agreement on packet formats early on

— Though confusion about integrity vs. authentication
e Key agreement was very controversial

— Design issues

— IPR issues

e First “proposed standards” published in 1998
— Mishmash of IKE, ISAKMP, OAKLEY

e Complaints about clarity and complexity

— |IKEv2 approved in 2005

Eric Rescorla SSH, SSL, and IPsec

49

IPsec architecture

User Space HTTP | SMTP IKE N
Kernel Space Transport
TCP/UDP
P \
/ J
| Psec \

40 ¥

Eric Rescorla

SSH, SSL, and IPsec

50

IPsec Packet Formats

|P IPsec | TCP

Hdr Hdr Hdr Data Transport Mode

|P | Psec |P TCP

Hdr | Hdr | Hdr | Hdr Data Tunnel Mode

Eric Rescorla

SSH, SSL, and IPsec

51

IKE “Anonymity”

e The handshakes we've seen leak your identity to passive attackers
— Arguably this is bad
— |IKE tries to stop this

Initiator Responder

DH;mb

DH;ub

{CERT"}

{CERT"}

e An active attacker can get the initiator’s identity

Eric Rescorla SSH, SSL, and IPsec 52

IKE DoS prevention

e Objective: prevent blind DoS attacks

Initiator Responder

DH;ub

Ticket

DH?

pub’

Ticket

DH;ub

{CERT"}

{CERT"}

e Ticket has to be stateless

Eric Rescorla SSH, SSL, and IPsec 53

IPsec Status

e Many implementations

— Windows, OS/X, Linux, FreeBSD, 10S...

e Nearly all deployments are in VPN settings

e And peopel are cutting over to SSL/VPN

— Semi-manual configuration
e This is not what was intended

e Widely regarded as a semi-failure

Eric Rescorla SSH, SSL, and IPsec

What was wrong with IPsec?

e Complexity
e [ime to market
e \Wrong design goals

e Hard to use

Eric Rescorla SSH, SSL, and IPsec

Final thoughts

e All of these protocols look strikingly alike
— To some extent they were designed by the same people

— But also there appear to only be so many ways to do this

e All have gone through multiple revisions
— This is really hard to get right
— Even when you ave experienced people

— Don’t invent your own

e Usage models matter

— SSL/TLS and SSH got this right
— [Psec did not

Eric Rescorla SSH, SSL, and IPsec

56

