
Lecture 34 – CAs and HTTPS

Attacks

Stephen Checkoway

Oberlin College

Slides from Miller and Bailey’s ECE 422

Certificates

•Make use of trusted “Certificate Authorities” (CA)

• “This public key with SHA-256 hash (XXX) belongs to the site

(name, e.g., Amazon.com)”

– Digitally signed by a certificate authority

• Your browsers (e.g., Firefox, Chrome) trust a specific set of CAs

as root CAs

– Shipped with the public keys of the root CAs

– Why do we need more than 1?

How the CA verifies your identity

• Typically ’DV’ (domain verification)

–Proves you are in control of DNS registration

–Just an email based challenge to the address in the domain

registration records

•Or some default email address, admin@domain.com

•Minimally secure [Why?]

–Alternately a web-based challenge

–Include challenge response in a <meta> tag

• Cert has an expiration date

(e.g., 90 days or one year ahead) [Why?]

How to invalidate certificates?

• Expiration date of certs

• Certificate revocation

• What happens if a CA’s secret key is leaked?

– Can we trust the old certs from that CA?

• Interesting fact:

– Google has instrumented Chrome such that when it observes a

certificate for Google.com that it doesn’t recognize, it panics…. (has

happened several times)

Self-signed Certificates

• Issuer signs their own certificate

– A loop in the owner and signer

• Avoid CA fees, useful for testing

–You can add yourself as a CA to your own browser

• Browsers display warnings that users have to override

• Protects only against passive attacker “optimistic encryption”

TLS Certificates

• A trusted authority vouches that a certain public key belongs to a
particular site

• Format called x.509 (complicated)

• Browsers ship with CA public keys for large number of trusted CAs
[accreditation process]

• Important fields:
• Common Name (CN) [e.g., *.google.com]

Expiration Date [e.g. 2 years from now]
Subject's Public Key
Issuer -- e.g., Verisign
Issuer's signature

• Common Name field
• Explicit name, e.g. cs.oberlin.edu

• Or wildcard, e.g. *.oberlin.edu

X509 Certificates

Subject: C=US/O=Google Inc/CN=www.google.com

Issuer: C=US/O=Google Inc/CN=Google Internet Authority

Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83

Expiration Period: Jul 12 2010 - Jul 19 2012

Public Key Algorithm: rsaEncryption

Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d

7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4

:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm: sha1WithRSAEncryption

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d

7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4

:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

Certificate Chains

• CA can delegate ability to generate certificates for certain names:

Intermediate CAs

• Root CA signs "certificate issuing certificate" for delegated authority

• Browser that trusts root can examine certs to establish validity -- "Chain of

trust”

• How to find out about all the CAs?

• More than 1000 trusted parties today, can sign for any domain – huge

problem!

Certificate Chains

Subject: C=US/…/O=Google Inc/CN=*.google.com

Issuer: C=US/…/CN=Google Internet Authority

Public Key:

Signature: bf:dd:e8:46:b5:a8:5d:28:04:38:4f:ea:5d:49:ca

Subject: C=US/…/CN=Google Internet Authority

Issuer: C=US/…/OU=Equifax Secure Certificate Authority

Public Key:

Signature: be:b1:82:19:b9:7c:5d:28:04:e9:1e:5d:39:cd

Subject: C=US/…/OU=Equifax Secure Certificate Authority

Issuer: C=US/…/OU=Equifax Secure Certificate Authority

Public Key:

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:38:c9:d1

Mozilla Firefox Browser

I authorize and trust

this certificate; here

is my signature

I authorize and trust

this certificate; here

is my signature

Trust everything

signed by this

“root” certificate

Certificate Authority Ecosystem

Each browser trusts a set of CAs

CAs can sign certificates for new CAs

CAs can sign certificates for any web site

If a single CA is compromised, then the entire system is

compromised

We ultimately place our complete trust of the Internet in the

weakest CA

Immediate Concerns

• Nobody has any idea who all these CAs are…

• 1,733 umich-known browser trusted CAs

• History of CAs being hacked (e.g. Diginotar)

• Oooops, Korea gave every elementary school, library, and

agency a CA certificate (1,324)

– Luckily invalid due to a higher-up constraint

Getting a Certificate

• Certificates are free (from LetsEncrypt!)

–Identity validated by challenge to website

• Certificates are cheap elsewhere too

–Identity is validated via e-mail to the default e-mail addresses

• Setting up TLS is hard. People are terrible at it.

Certificate Signing Requests, eugh

Integrating in a web server

TLS in the browser

• Lock icon

– HTTPS cert must be issued by a CA trusted by browser (or chain to

one that is)

– HTTPS cert is valid (e.g., not expired or revoked)

– CommonName in cert matches domain in URL

• Extended Validation (EV) certificates

– CA does extra work to verify identity -- expensive, but NO more

secure

• Invalid certificate warnings

Attack Vectors

• Attack the weakest Certificate Authority

• Attack browser implementations

• Magically notice a bug in a key generation library that leads

you to discovering all the private keys on the Internet

• Attack the cryptographic primitives

– Math is hard

Google no evil

Attacking site design

• SSLstrip attack

– Proxy through the content w/o HTTPS

• Defense

– Default HTTPS for all web sites?

– HSTS (hypertext strict transport security): header says: always expect

HTTPS, enforced by browsers.

– HTTPS Everywhere: browser extension

– EV: Extended Validation (compared to DV: Domain Validation)

Attacking site design

• Mixed Content attack -- Page loads over HTTPS but contains

content over HTTP

– e.g. JavaScript, Flash

– Active attacker can tamper with HTTP content to hijack session

• Defense: Browser warnings: ["This page contains insecure

content"],

– but inconsistent and often ignored

UI interface based attacks

• Invalid certs

– Expired, Common Name != URL, unknown CA (e.g., self-signed)

• Defense: browser warnings, anti-usability to bypass…

• Picture-in-picture attack: spoof the user interface

– Attacker page draws fake browser window with lock icon

• Defense: individualized image

Attacking the PKI: CA compromise

Example: DigiNotar

Attacking the PKI: CA compromise

Example: DigiNotar

• DigiNotar was a Dutch Certificate Authority

• On June 10, 2011, *.google.com cert was issued to an

attacker and subsequently used to orchestrate MITM attacks

in Iran

• Nobody noticed the attack until someone found the certificate

in the wild… and posted to pastebin

DigiNotar Contd.

• DigiNotar later admitted that dozens of fraudulent certificates

were created

• Google, Microsoft, Apple and Mozilla all revoked the root

Diginotar certificate

• Dutch Government took over Diginotar

• Diginotar went bankrupt and died

Attacking the PKI: Hash collisions

• MD5/SHA1 is known to be broken -- Can generate collisions

• In 2008, researchers showed that they could create a rogue CA

certificate using an MD5 collision

• Attack: Make colliding messages A, B, with same MD5 hash:

– A: Site certificate: "cn=attack.com, pubkey=....”

– B: Delegated CA certificate: "pubkey=.... is allowed to sign certs for *”

– Get CA to sign A -- Signature is Sign(MD5(message))

– Signature also valid for B (same hash)

– Attacker is now a CA!

– Make a cert for any site, browsers will accept it

MD5 considered harmful

• MD5 CA certificates still exist, but CAs have stopped signing

certificates with them

– 198,201 unexpired, not self-signed certificates still have MD5-RSA

signatures

•SHA-1 should not be used either

– 9,214,237 unexpired, not self-signed certs use SHA1-RSA

•Numbers according to censys.io current as of 2020-12-02

Attacking implementations:

Null Termination Attack

• ASN.1 utilizes Pascal-style strings

• Web browsers utilize use C-style strings

• Announced by Moxie Marlinspike in 2009

gmail.com\0.badguy.com

Null Termination Attack

• www.attacker.com
– [CAs verify cert by looking up who owns the last part of the domain via DNS record]

– emails "webmaster@attack.com" --> "Click here to validate cert request”

• x.509 certs encode CN field as a Pascal string (length+data)

• Browsers copy it into a C string (data+\0)

• What if CA contains "\0"?
– www.paypal.com\0.attacker.com?

– CA contacts "attacker.com" to verify (last part of domain name)

– Browsers copy to C string, terminates at "\0" -- see only paypal.com

– Attacker now has a cert that works for Paypal!

http://www.attacker.com
http://www.paypal.com/0.attacker.com

Other implementation-based attacks

• Goto fail, Feb. 2014 (Apple SSL bug; skipped certificate check

for almost a year!)

• Heartbleed, April 2014 (OpenSSL bug; leaked data, possibly

including private key!)

• Mozilla BERserk vulnerability, Oct 2014 (Bug in verifying cert

signatures, allowed spoofing certs, probably since the

beginning….!)

•Logjam, Oct 2016 (TLS vulnerable to Man-in-the middle

“Downgrade” attack)

Who controls the TLS endpoint?

Cloudbleed (bug in Cloudflare discovered 2017)

- one of the most popular “content delivery networks”

- acts as the TLS endpoint for many servers

- a buffer overflow attack caused it to leak HTTPS data

Clientside HTTP Interception
- Most antivirus software intercepts your HTTPS [How?]

- Introduces new vulnerabilities by implementing poorly

Takeaways

• Use HTTPS! It’s so much better than nothing

• TLS keeps breaking. Use it, but don't rely on it exclusively.

