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Review:  Integrity

Problem: Sending a message over an untrusted channel without being changed

Provably-secure solution: Random function

Practical solution: 

Pseudorandom function (PRF) 

Input: arbitrary-length k

Output: fixed-length value

Secure if practically indistinguishable from a random function, unless know k

Real-world use: Message authentication codes (MACs) built on cryptographic 

hash functions 

Popular example: HMAC-SHA256k(m)

e.g. “Attack at dawn”, 628369867…

m, v := fk(m)
Bob

m', v’ =? fk(m’)
Alice Mallory

k k



Review:  Confidentiality

Problem: Sending message in the presence of an eavesdropper without 
revealing it

Provably-secure solution: One-time pad

Practical solution: 

Pseudorandom generator (PRG)

Input: fixed-length k
Output: arbitrary-length stream

Secure if practically indistinguishable from a random stream, unless know k

Real-world use: Stream ciphers (can’t reuse k) 

Popular example: AES-128 + CTR mode

Block ciphers (need padding/IV) Popular example: AES-128 + CBC mode

c := Ek(p)

Bob

p := Dk(c)

Alicek k

Eve

c



Common theme:  Key

Requirements
• Must be known by both Alice and Bob

• Must be unknown by anyone else
• Must be infeasible to guess

We’d like Alice and Bob to agree on a key that satisfies those 

properties by sending public messages to each other



Key Exchange



Issue:  How do we get a shared key?

BobAlice

Eve
No shared secret (yet!)

Amazing fact:

Alice and Bob can have a public conversation to derive a shared key! 

Diffie-Hellman (D-H) key exchange

1976: Whit Diffie, Marty Hellman, improving partial solution from Ralph Merkle

(earlier, in secret, by Malcolm Williamson of UK’s GCHQ)

Relies on a mathematical hardness assumption called discrete log problem

(a problem believed to be hard)





Group Theory Basics



gx

A Schnorr group G is a subset of numbers, under 

multiplication, modulo a prime p.    (a “safe prime”)

- We can check if a number x is an element of the group

- If x and y are in the group, then x*y is in the group too

(x*y means x times y mod p)

- g is a generator of the group if every element of the 

group can be written as gx for some exponent x.

Schnorr groups 

Generator, an 

element of the 

group

Exponent,   0 <= x < (p - 1)/2



A class of mathematical objects (it generalizes “numbers mod p”)

Definition: A group (G,*) is a set of elements G, and a binary 

operation *

- (Closed):  for any x, y ∈ G, we know x*y ∈ G

- (Identity): we know the identity e (often written 1) in G

for any x ∈ G,    we have e*x = x = x*e

- (Inverses): for any x, we can compute x-1*x = e

- (Associative):  For x, y, z ∈ G,     x*(y*z) =  (x*y)*z

What is a Group?



To generate a Schnorr group:

1. Pick a random, large, (e.g. 2048 bits) “safe prime” p

p is a “safe prime” if (p - 1) / 2 is also prime

2. Pick a random number g0 in the range 2 to (p - 1)

3. Let g = (g0)2 mod p.  If g = 1, goto step 2

This is the “generator” of the group.

- A number x > 0 is in the group if x2 ≠ 1 mod p

- The order of each element is (p - 1) / 2.

g(p - 1)/2 = 1 mod p

- We can compute inverses x-1 s.t. x-1 x = 1 mod p

Schnorr Groups in more detail



Problems assumed “hard” in Schnorr groups:

- Discrete logarithm problem

Given gx for some random x, find x

- Diffie Hellman problem (computational)

Given ga, gb for random a,b compute gab

- Diffie Hellman problem (decisional)

Flip a bit c, generate random exponents a,b,r

Given ( ga, gb, gab ) if c=0,   or ( ga, gb, gr ) if c=1,

Guess c

*These problems are thought to be hard in other groups too, 

e.g. some Elliptic Curves



Diffie-Hellman protocol

Alice and Bob agree on public parameters (maybe in standards doc)

Alice

Generates random 

secret exponent a.

Bob

Generates random

secret value b.

ga

BobAlice

a b

gb

Computes x

= (gb)a

= gba

Computes xʹ

= (ga)b

= gab

(Notice that x = xʹ)

Can use k = hash(x) as a shared key.



A visual analogy:

“Mixing paints”

Mixing in a new color is 

a little bit like 

exponentiation.

Hard to invert?

Two different ways at 

arriving at the same final 

result.



Passive eavesdropping attack

Eve knows:    g,   ga,   gb

Eve wants to compute x = gab

Best known approach: 

Find a or b, by solving discrete log, then compute x

No known efficient algorithm.

[What’s D-H’s big weakness?]

ga

BobAlice

a b

gb

Eve



Man-in-the-middle (MITM) attack

Alice does D-H exchange, really with Mallory, ends up with gau

Bob does D-H exchange, really with Mallory, ends up with gbv

Alice and Bob each think they are talking with the other, but really Mallory 

is between them and knows both secrets

Bottom line: D-H gives you secure connection, but you don’t know who’s 

on the other end!

ga

BobAlice
a b

gu

Mallory
gv

gb

u v



Defending D-H against MITM attacks:

• Cross your fingers and hope there isn’t an active adversary.

• Rely on out-of-band communication between users.  [Examples?]

• Rely on physical contact to make sure there’s no MITM.  [Examples?]

• Integrate D-H with user authentication.

If Alice is using a password to log in to Bob, leverage the password:

Instead of a fixed g, derive g from the password – Mallory can’t participate w/o 

knowing password.

• Use digital signatures. [More later.]



Public Key Encryption

Suppose Bob wants to receive data from lots of people, 

confidentially…

Schemes we’ve discussed would require a 

separate key shared with each person

Example: a journalist who wishes to receive secret tips



Public Key Encryption

- Key generation: Bob generates a keypair

public key, kpub and private key, kpriv

- Encrypt: Anyone can encrypt the message M, resulting in 

ciphertext C = Enc( kpub, M)

- Decrypt: Only Bob has the private key needed to decrypt the 

ciphertext: M=Dec( kpriv, C)

- Security: Infeasible to guess M or kpriv, even knowing kpuband 

seeing ciphertexts



Public Key Encryption w/ ephemeral key exchange

Key generation:

kpriv:= b generated randomly, and  kpub:= gb

Encrypt(M):
Generate random a, set k := hash(kpub

a), encrypt C = AES-enc(k, M)
Send (ga, C) as ciphertext

Decrypt(ga, C):
compute k = hash( (ga)b ),
decrypt M = AES-dec(k, C)

ga, C
BobAlice

a b

Evekpub kpub= gb



Suppose Alice publishes data to lots of people, and they 

all want to verify integrity…

Can’t share an integrity key with everybody, or 

else anybody could forge messages

Example: administrator of a source code repository

Public Key Digital Signatures



Public Key Digital Signature

- Key generation: Bob generates a keypair

public key, kpub and private key, kpriv

- Bob can sign a message M, resulting in signature

S = Sign( kpriv, M)

- Anyone who knows kpub can check the signature:
Verify( kpub, M, S) ≟ 1

- “Unforgeable”: Computationally infeasible to guess S or kpriv, 

even knowing kpub and seeing signatures on other messages



Best known, most common public-key algorithm: RSA

Rivest, Shamir, and Adleman 1978

(earlier by Clifford Cocks of UK’s GCHQ, in secret)



How RSA signatures work

Key generation:

1. Pick large (say, 2048 bits) random primes p and q

2. Compute N = pq (RSA uses multiplication mod N)

3. Pick e to be relatively prime to   (p-1)(q-1)

4. Find d so that ed mod (p-1)(q-1) = 1

5. Finally: 

Public key is  (e,N)

Private key is  (d,N)

To sign: S = Sign(x) = xd mod N

To verify: Verif(S) = Se mod N        Check Verif(S) ≟M



Why RSA works

“Completeness” theorem:

For all 0 < x < N (except x = p or x = q), we can show that Verif(Sign(x)) = x

Proof:

Verif(Sign(x))

= (xd mod pq)e mod pq

= xed mod pq

= xa(p-1)(q-1)+1 mod pq for some a (because ed mod (p-1)(q-1) = 1)

= (x(p-1)(q-1))ax mod pq

= (x(p-1)(q-1) mod pq)ax mod pq

= 1ax mod pq (by Euler’s theorem, x(p-1)(q-1) mod pq = 1)

= x



Is RSA secure?

Best known way to compute d from e is factoring N into p and q.

Best known factoring algorithm:

General number field sieve

Takes more than polynomial time but less than exponential time to 

factor n-bit number.

(Still takes way too long if p,q are large enough and random.)

Fingers crossed…

but can’t rule out a breakthrough!



To generate an RSA keypair:

$ openssl genrsa -out private.pem 1024

$ openssl rsa -pubout -in private.pem > public.pem

To sign a message with RSA:

$ openssl rsautl -sign -inkey private.pem -in a.txt > sig

To verify a signed message with RSA:

$ openssl rsautl -verify -pubin -inkey public.pem -in sig



Public key digital 

signatures on 

hashes of code 

releases



Subtle fact: RSA can be used for 

either confidentiality or integrity

RSA for confidentiality:

Encrypt with public key, Decrypt with private key

Public key is  (e,N)

Private key is  (d,N)

To encrypt: E(x) = xe mod N

To decrypt: D(x) = xd mod N        

RSA for integrity:

Encrypt (“sign”) with private key

Decrypt (“verify”) with public key



RSA drawback: Performance

Factor of 1000 or more slower than AES.

Dominated by exponentiation – cost goes up (roughly) as cube of key size.

Message must be shorter than N.

Use in practice:

Hybrid Encryption (similar to key exchange):

Use RSA to encrypt a random key k < N, then use AES

Signing: 

Compute v := hash(m), use RSA to sign the hash         

Should always use crypto libraries to get details right



The reality is more complicated

Can’t just compute me mod N (what if we know m < N1/e?)

Need to pad the message

Some schemes are good (PSS, OAEP)

Some schemes are bad (PKCS#1v1.5)

Different for signatures and encryption



What can go wrong with RSA?

Hundreds of things!!

Many have a common theme: tweaking the 

protocol for efficiency (e.g., small exponents) 

leads to a compromise.



One example of a failure: Common P’s and Q’s

Individually,    N = pq is very hard to factor.

Turns out, due to poor entropy, many pairs of RSA keys are 

generated with same p

N1 = pq1

N2 = pq2

Given two products with a common factor, easy to compute 

GCD(N1, N2) = p with Euclid’s algorithm.



Key Management



The hard part of crypto:   Key-management

Principles:

0. Always remember, key management is the hard part!

1. Each key should have only one purpose
(in general, no guarantees when keys reused elsewhere)

1. Vulnerability of a key increases:

a. The more you use it.
b. The more places you store it.
c. The longer you have it.

2. Keep your keys far from the attacker.

3. Protect yourself against compromise of old keys.

Goal: forward secrecy — learning old key shouldn’t help adversary learn 

new key.

[How can we get this?]



Building a secure channel

What if you want confidentiality and integrity at the same time?

Encrypt, then MAC

not the other way around

Use separate keys for confidentiality and integrity.

Need two shared keys, 

but only have one? 

That’s what PRGs are for!  

If there’s a reverse (Bob to Alice) channel, use separate keys for that too



Issue:  How big should keys be?

Want prob. of guessing to be infinitesimal… but watch out for Moore’s law – safe size 

gets 1 bit larger every 18 months

128 bits usually safe for ciphers/PRGs

Need larger values for MACs/PRFs due to birthday attack

Often trouble if adversary can find any two messages with same MAC

Attack: Generate random values, look for  coincidence.

Requires O(2|k|/2) time, O(2|k|/2) space.

For 128-bit output, takes 264 steps: doable!

Upshot: Want output of MACs/PRFs to be twice as big as cipher keys e.g. 

use HMAC-SHA256 alongside AES-128



https://www.keylength.com/en/4/



https://www.keylength.com/en/4/



Attacks against Crypto

1. Brute force: trying all possible private keys

2. Mathematical attacks: factoring

3. Timing attacks: using the running time of decryption

4. Hardware-based fault attack: induce faults in hardware to 
generate digital signatures

5. Chosen ciphertext attack

6. Architectural Changes



Quantum Computers:

What will be impacted?

Public key crypto:

RSA

Elliptic Curve Cryptography (ECDSA)

Finite Field Cryptography (DSA)

Diffie-Hellman key exchange

Symmetric key crypto:

AES,  Triple DES 

Hash functions:

SHA-1, SHA-2 and SHA-3

Need Larger Keys

Use longer output



So Far:

Message Integrity

Confidentiality

Key Exchange

Public Key Crypto

Next:

HTTPS and TLS: Secure channels for the web


