
Lecture 20 – Passwords and Authentication

Stephen Checkoway

Oberlin College

Slides based on Bailey’s ECE 422

Major Portions Courtesy Ryan Cunningham

AUTHENTICATION

Authentication Basics

• Authentication binds identity to a subject

• Two step process

– Identification - establish identity to system

– Verification - process verifies and binds entity and identity

PASSWORD AUTHENTICATION

Basics

• User keeps a secret string (password)

• Something the user knows

• Advantages?

• Disadvantages?

Attacks

• Steal from the user
– Install a keylogger (hardware or software)

– Find it written down

– Social engineering/Phishing

– Intercept the password over network

– Use a side channel

• Steal from the service
– Install malware on the web server

– Dump the password database with SQL injection

• Steal from a third party (password reuse)

Password Guessing

http://www.datagenetics.com/blog/september32012/

Top 20 Passwords (Mark Burnett)

1. password, 32027

2. 123456, 25969

3. 12345678, 8667

4. 1234, 5786

5. qwerty, 5455

6. 12345, 4523

7. dragon, 4321

8. pussy, 3945

9. baseball, 3739

10. football, 3682

11. letmein, 3536

12. monkey, 3487

13. 696969, 3345

14. abc123, 3310

15. mustang, 3289

16. michael, 3249

17. shadow, 3209

18. master, 3182

19. jennifer, 2581

20. 111111, 2570

https://xato.net/10-000-top-passwords-6d6380716fe0#.lo0geeq99

Power Law

http://www.philippeadjiman.com/blog/2009/10/26/drawing-the-long-

tail-of-a-zipf-law-using-gnuplot-java-and-moby-dick/

Secure Passwords

• Uneven distribution makes guessing easier

• Passwords should be uniformly distributed

– All characters in password chosen with equal probability

• Passwords should be long

– Longer password = larger brute force search space

• Passwords should never be reused

• Passwords chosen randomly are difficult to remember

– Tradeoff of security vs. convenience

STORING PASSWORDS

Slide 12

Storing Passwords

• Password database is highly sensitive

• We should never store plaintext passwords

• Store something that lets user prove they know the password

Hash functions (more later)

• Input – data of an arbitrary size

• Output – fixed length

• Same input always produces the same output

• One way function – cannot deduce input from output

• A “fingerprint” for the input

• Examples: MD5, SHA-1, SHA-256, SHA-512, SHA-3

– md5("welcome")= 40be4e59b9a2a2b5dffb918c0e86b3d7

• None of these should be used directly used for password
hashing

Noncryptographic hash functions (and more)

• Cyclic redundancy checks (CRC)

– CRC-16, CRC-32, etc.

– Based on polynomials, many variants

• Checksums

– sum-8, sum-16, Adler-32, Luhn algorithm, etc.

• Noncryptographic hash functions

– FNV-1, Berstein hash (djb2), Java’s hashCode()

• None of these should be used used for password hashing

Password Hashes

• We store a database of password hashes

• e.g., /etc/shadow on UNIX

rcunnin2:6vb1tLY1qiY$M.1ZCqKtJBxBtZm1gRi8B

bkn39KU0YJW1cuMFzTRANcNKFKR4RmAQVk4rqQQCkaJT

6wXqjUkFcA/qNxLyqW.U/:15405:0:99999:7::

Password Cracking

• Brute force search through all possible passwords in order

• Use a dictionary

• Use a dictionary of common passwords

• Combine dictionary with common passwords and heuristics (e.g.

p@$$w0rd and password123)

• Use statistical models of user passwords

• Easy to parallelize: hash password guess, compare to entire hash

database

• Commonly done with arrays of GPUs

Rainbow Tables

• Many passwords are common

• Precompute them in a lookup table

• Time/space tradeoff

Salting Password Database

• Generate and store a random number, the salt for each password

• Concatenate password and salt to compute hash

• Effectively a unique hash function for each password

p@$$w3rd 1517

zDMovrtf$Vdy63ipRgRAeKHvDIQP3F0

Hash

Password Security Policies

• Educate users about password security
– Specifically train them to use good passwords

– But they might or might not follow through

• Generate passwords randomly
– Perfect uniform distribution

– But not very psychologically acceptable

• Reactive password checking
– Crack your own user’s passwords

– But expensive and passwords vulnerable until cracked

• Complex password policy/proactive checking

Complex Password Policy/Proactive Checking

• Let the user select their own password

• Force them to follow a policy

• Reject passwords that don’t follow policy

• But…

– Technically reduces number of possible passwords

– Policy might not be psychologically acceptable

– We don’t know if users are reusing their passwords

Security Questions

• Are also a shared secret

• Bruce Schneier calls them “a backup password”

• Easier to guess and social engineer

• Some cannot be changed

• Some websites have a fixed set of answers!

Breaches happen

• Databases of usernames and passwords are exposed

• https://haveibeenpwned.com/ß Use this!

https://haveibeenpwned.com/

RECENT PASSWORD SOLUTIONS

Password Managers

• Application that generates and maintains passwords

• Examples: Browsers, LastPass, KeePass, DashLane, 1Password

• Advantages:
– Can handle random passwords

– Can create unique passwords for every website and service

• Disadvantages
– One point of failure

– Requires a strong password (could be snooped)

– Could be hacked (only as secure as the password manager)

– Inconvenient (doesn’t work for some sites, set up time, etc.)

One Point of Failure…

Single Sign-On (SSO)

• Login to trusted 3rd party (identity provider), who vouches for

user identity

• Examples: Facebook Connect, OAuth, OpenID Connect

• Pros and cons similar to Password Managers

• Third party can track users…

TOKEN-BASED AUTHENTICATION

Basics

• Something the user has

• Static memory cards

– Read only

– e.g. ATM card/Credit Card

– Vulnerable to replay attack

• Smart card

– Storage and computation

– Enables challenge-response or one-time password

– Protects against replay attack

Challenge-Response

One-time password (OTP)

• Smart card can also implement one-time password scheme

• S/Key is one such scheme

• Time-based one-time password is another (TOTP)

• Vulnerable to man-in-the-middle (MitM)

S/Key

• Server

– Generates random seed S

– Computes H(S), H2(S), H3(S), ..., Hn+1(S) and gives the first n of them to the
client in reverse order

– Server stores Hn+1(S) and discards the rest

• To authenticate

– Client sends the first unused value P (initially P=Hn(S)) to the server

– Server computes H(P) and compares to the stored value

– If there’s a match, the client is authenticated and discards P; the server
discards the stored value and stores P in its place

TOTP

• The current time is turned into time-counter TC

– TC = floor((now – start_time)/time_step)

• TC and a secret key are used to create TOTP

– TOTP = HOTP(secret_key, TC)

– HOTP is based on a keyed-hash function

• The output is TOTP mod 10d for d digits

• Client and server both compute the output value based on the

current time and the client sends it to the server

One-time Password MitM

1. User sends username/password to phishing site

2. Phishing site forwards them to legitimate site

3. Legitimate site asks phisher for OTP

4. Phishing site asks user for OTP

5. User sends OTP to phisher

6. Phisher sends OTP to legitimate site

One-time Password MitM

• What’s the problem?

– OTP not bound to the website it is sent to

– OTP can be replayed

• What’s the solution?

– Bind the OTP to the specific website

– Then OTP sent to bankofthevvest.com can’t be sent to

bankofthewest.com (for example)

Universal second factor (U2F)

• Addresses OTP’s

weakness to MitM

• Website’s origin is

cryptographically

bound to the

response (not

displayed in the

diagram)

https://developers.yubico.com/U2F/Libraries/Using_a_library.html

Disadvantages

• Token can be lost, stolen, or counterfeited

• Requires an individual physical token

• Requires an extra step (mildly inconvenient)

• Hardware can be expensive…

– …but usually isn’t

– $20 for U2F key from Yubico

– Google, Facebook, and Yubico were all giving these away at a recent

conference I attended (pre-pandemic!)

BIOMETRIC AUTHENTICATION

Biometrics

• Something the user is or does

• Derive a signature from biological features of user

– Voice, fingerprint, face, retina, handwriting, gait

• Advantages?

• Disadvantages?

Disadvantages

• Imprecise measurements require approximate matching

– Essentially a machine learning task

– False negatives and false positives have a cost

• Measurements change over time

• Poor accessibility

• Cannot be replaced or concealed

• Replay attacks/spoofing possible

• Can be legally compelled to provide biometrics

OPM Breach

Facial Recognition

OTHER SCHEMES

2 Factor Authentication (2FA)

• Something you have AND something you know

• Either factor is useless without the other

• Chip and PIN

• Commonly implemented in mobile phones via SMS

– Disadvantages:

• ONE device (if hacked)

• SMS is easy to redirect

• ONE point of failure for SE (phone company)

• Google authenticator, Duo Mobile, Authy, Yubico Authenticator

• OTP tokens (e.g., TOTP), U2F keys

Multifactor Authentication

• Next level 2FA

• Combination of biometrics, knowledge, and possession

Behavior Profiling

• Track access behavior of users

– Systems used

– Times and locations when active

– Typical usage

• Look for anomalous or fraudulent behavior

• “Why is this person who was in Iowa 2 minutes ago logging in

from Nigeria?”

• Used in fraud prevention

