
Lecture 19 – Finding

Vulnerabilities

Stephen Checkoway

Oberlin College

Slides based on Bailey’s ECE 422

Finding Vulns

• Specification testing

• Automated white box tools

• Fuzzing

• Reverse engineering

The Need for Specifications

• Testing checks whether program implementation agrees with
program specification

• Without a specification, there is nothing to test!

• Testing is a form of consistency checking between implementation
and specification

• Recurring theme for software quality checking approaches

• What if both implementation and specification are wrong?

Developer != Tester

• Developer writes implementation, tester writes specification

• Unlikely that both will independently make the
same mistake

• Specifications useful even if written by developer itself

• Much simpler than implementation

• Specification unlikely to have same mistake as implementation

Classification of Testing Approaches

M
a

n
u

a
l

Black-Box White-Box

A
u

to
m

a
te

d

Automated vs. Manual Testing

• Automated Testing:

• Find bugs more quickly

• No need to write tests

• If software changes, no need to maintain tests

• Manual Testing:

• Efficient test suite

• Potentially better coverage

Black-Box vs. White-Box Testing

• Black-Box Testing:

• Can work with code that cannot be modified

• Does not need to analyze or study code

• Code can be in any format (managed, binary, obfuscated)

• White-Box Testing:

• Efficient test suite

• Potentially better coverage

How Good Is Your Test Suite?

• How do we know that our test suite is good?

• Too few tests: may miss bugs

• Too many tests: costly to run, bloat and redundancy, harder to maintain

• Example: SQLite
“As of version 3.20.0 (2017-08-01), the SQLite library consists of
approximately 125.4 KSLOC of C code. (KSLOC means thousands of
‘Source Lines Of Code’ or, in other words, lines of code excluding
blank lines and comments.) By comparison, the project has 730 times
as much test code and test scripts - 91616.0 KSLOC.”

• Nevertheless, 18 CVEs fixed between January and June 2020

Code Coverage

• Metric to quantify extent to which a program’s code
is tested by a given test suite

• Function coverage: which functions were called?

• Statement coverage: which statements were executed?

• Branch coverage: which branches were taken?

• Given as percentage of some aspect of the program executed in the tests

• 100% coverage rare in practice: e.g., inaccessible code
• Often required for safety-critical applications

• Example: SQLite has 100% branch coverage

Classification of Testing Approaches

M
a

n
u

a
l

Black-Box White-Box

A
u

to
m

a
te

d

Manual white-box testing

• Tests written by hand

• Full knowledge of source code/deployment/infrastructure

• Can test all parts

• Test running can be automated (e.g., on commits/deployment)

Test Driven Security

Classification of Testing Approaches

M
a

n
u

a
l

Black-Box White-Box

A
u

to
m

a
te

d

Automated white-box testing

• Tests created automatically/dynamically

• Godefroid et al. “Automated Whitebox Fuzz Testing”

• Record trace of program on well-formed inputs

• Symbolic execution to capture constraints on input

• Negate a constraint, use a constraint solver to derive new input, run on that
input

• American fuzzy lop

• Compile-time instrumentation

• Genetic algorithms guided by the instrumentation

• Tools exist

Automated white-box testing tools

Classification of Testing Approaches

M
a

n
u

a
l

Black-Box White-Box

A
u

to
m

a
te

d

Manual black-box testing

• Tester interacts with the system in a black-box fashion

• Crafts ill-formed inputs, tests them, and records how the system
reacts

Web Pen Testing Simple Example

Classification of Testing Approaches

M
a

n
u

a
l

Black-Box White-Box

A
u

to
m

a
te

d

Automated black-box testing

• Fuzzing components

• Test case generation

• Application execution

• Exception detection and logging

Test Case Generation

• Random Fuzzing

• “Dumb” (mutation-based) Fuzzing

• Mutate an existing input

• “Smart” (generation-based) Fuzzing

• Generate an input based on a model (grammar)

Mutation Fuzzer

• Charlie Miller’s “5 lines of Python” fuzzer

• Found bugs in PDF and PowerPoint readers

Reverse Engineering

• Reverse Engineering (RE) -- process of discovering the technological
principles of a [insert noun] through analysis of its structure, function,
and operation.

• The development cycle ... backwards

http://en.wikipedia.org/wiki/Process_(engineering)
http://en.wikipedia.org/wiki/Function_(engineering)

Why Reverse Engineer?

• Malware analysis

• Vulnerability or exploit research

• Check for copyright/patent violations

• Interoperability (e.g., understanding a file/protocol format)

• Copy protection removal

Legality

• Gray Area (a common theme)

• Usually breaches the EULA contract of software

• Additionally -- DMCA law governs reversing in U.S.

• “may circumvent a technological measure ... solely for the purpose of
enabling interoperability of an independently created computer program”

Two Techniques

• Static Code Analysis (structure)

• Disassemblers

• Dynamic Code Analysis (operation)

• Tracing / Hooking

• Debuggers

• Combination of the two works best in my experience

Disassembly

11101011 00000110 0xEB 0x06 JMP +6

01010000 0x50 PUSH EAX

Bits Hex Bytes

Instructions
(human-readable)

Basic Block

Control Flow Diagram

Difficulties

• Imperfect disassembly

• Benign Optimizations
• Constant folding

• Dead code elimination

• Inline expansion

• Loop unrolling

• etc...

• Intentional Obfuscation
• Packing

• No-op instructions

Dynamic Analysis

• A couple techniques available:

• Tracing / Hooking

• Debugging

Tracing with

Procmon

Kernel supported API

Event Tracing for Windows (ETW)

Debugger Features

• Trace every instruction a program executes -- single step

• Or, let program execute normally until an exception

• At every step or exception, can observe / modify:

• Instructions, stack, heap, and register set

• May inject exceptions at arbitrary code locations

• INT 3 instruction generates a breakpoint exception

OllyDbg

Debugger

Debugging Benefits

• Sometimes easier to just see what code does

• Unpacking

• just let the code unpack itself and debug as normal

• Most debuggers have in-built disassemblers anyway

• Can always combine static and dynamic analysis

Difficulties

• We are now executing potentially malicous code

• use an isolated virtual machine

• Anti-Debugging

• detect debugger and [exit | crash | modify behavior]

• IsDebuggerPresent(), INT3 scanning, timing, VM-detection, pop ss trick, etc.,
etc., etc.

• Anti-Anti-Debugging can be tedious

Commonality of evasion

• Detect evidence of monitoring systems

• Fingerprint a machine/look for fingerprints

• Hide real malicious intent if necessary

• IF VM_PRESENT() or DEBUGGER_PRESENT()

• Terminate() // hide real intent

• ELSE

• Malicious_Behavior() //real intent

Taxonomy of malware evasion

Layer of abstraction Examples

Application Installation, execution

Hardware Device name, drivers

Environment Memory and execution artifacts

Behavior Timing

Easier

Harder

Example 1

• Device driver strings

• Network cards

Example 2

• VMWare CommChannel (hooks)

Write Magic values to

EAX, EBX…

Read Port ‘VX’

Useful

information

returned

Under VMware

Write Magic values to

EAX, EBX…

Read Port ‘VX’

Exception

raised

Under Plain

Machine

Write Magic values to

EAX, EBX…

Read Port ‘VX’

Exception

raised

VMware

Detection

No exception

VMware

detected

VMware

Not detected

VMware detection code

MOV EAX, 0x564D5868 ; 'VMXh’

MOV EBX, 0 ; Any value but not the MAGIC VALUE

MOV ECX, 0x0A ; Get VMWare version

MOV EDX, 0x5658 ; 'VX' (port number)

IN EAX, DX ; Read port

CMP EBX, 0x564D5868 ; Is there a reply from VMWare? ‘VMXh’

https://www.aldeid.com/wiki/VMXh-Magic-Value

Prevalence of evasion

• 40% of malware samples exhibit fewer malicious events with
debugger attached

• 4.0% exhibit fewer malicious events under VMware execution

0

1000

2000

3000

4000

5000

6000

7000

8000

All Malicious DBG-Evade VM-Evade

Breakdown

