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Finding Vulns

* Specification testing
* Automated white box tools
* Fuzzing

* Reverse engineering



The Need for Specifications

* Testing checks whether program implementation agrees with
program specification

* Without a specification, there is nothing to test!

* Testing is a form of consistency checking between implementation
and specification

* Recurring theme for software quality checking approaches
 What if both implementation and specification are wrong?



Developer |= Tester

* Developer writes implementation, tester writes specification

* Unlikely that both will independently make the
same mistake

 Specifications useful even if written by developer itself

* Much simpler than implementation
* Specification unlikely to have same mistake as implementation



Classification of Testing Approaches

Automated

Manual

Black-Box  White-Box



Automated vs. Manual Testing

* Automated Testing:

* Find bugs more quickly

* No need to write tests

* |f software changes, no need to maintain tests
* Manual Testing:

* Efficient test suite

e Potentially better coverage



Black-Box vs. White-Box Testing

* Black-Box Testing:
e Can work with code that cannot be modified
* Does not need to analyze or study code
* Code can be in any format (managed, binary, obfuscated)

* White-Box Testing:
 Efficient test suite
* Potentially better coverage



How Good Is Your Test Suite?

* How do we know that our test suite is good?

e Too few tests: may miss bugs
* Too many tests: costly to run, bloat and redundancy, harder to maintain

* Example: SQLite
“As of version 3.20.0 (2017-08-01), the SQLite library consists of
approximately 125.4 KSLOC of C code. (KSLOC means thousands of
‘Source Lines Of Code’ or, in other words, lines of code excluding
blank lines and comments.) By comparison, the prOJect has 730 times
as much test code and test scripts -

* Nevertheless, 18 CVEs fixed between January and June 2020



Code Coverage

* Metric to quantify extent to which a program’s code
is tested by a given test suite
* Function coverage: which functions were called?
* Statement coverage: which statements were executed?
* Branch coverage: which branches were taken?

* Given as percentage of some aspect of the program executed in the tests

* 100% coverage rare in practice: e.g., inaccessible code
* Often required for safety-critical applications
* Example: SQLite has 100% branch coverage



Classification of Testing Approaches

Automated

v

Black-Box  White-Box

Manual




Manual white-box testing

* Tests written by hand
* Full knowledge of source code/deployment/infrastructure
* Can test all parts

 Test running can be automated (e.g., on commits/deployment)
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Automated white-box testing

* Tests created automatically/dynamically

* Godefroid et al. “Automated Whitebox Fuzz Testing”
* Record trace of program on well-formed inputs
* Symbolic execution to capture constraints on input
* Negate a constraint, use a constraint solver to derive new input, run on that
input
 American fuzzy lop
* Compile-time instrumentation
* Genetic algorithms guided by the instrumentation

* Tools exist
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Manual black-box testing

 Tester interacts with the system in a black-box fashion

* Crafts ill-formed inputs, tests them, and records how the system
reacts
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Automated black-box testing

* Fuzzing components
* Test case generation
* Application execution
* Exception detection and logging



Test Case Generation

* Random Fuzzing

* “Dumb” (mutation-based) Fuzzing
* Mutate an existing input

* “Smart” (generation-based) Fuzzing
* Generate an input based on a model (grammar)



Mutation Fuzzer

e Charlie Miller’s “5 lines of Python” fuzzer
* Found bugs in PDF and PowerPoint readers

numwrites=random.randrange(
math.ceil((float(len(buf)) / FuzzFactor)))+1
for j in range(numwrites):
rbyte = random.randrange(256)

rn = random.randrange(len(buf))
buf[rn] = "%c"%(rbyte);




Reverse Engineering

* Reverse Engineering (RE) -- process of discovering the technological
principles of a [insert noun] through analysis of its structure, function,
and operation.

* The development cycle ... backwards


http://en.wikipedia.org/wiki/Process_(engineering)
http://en.wikipedia.org/wiki/Function_(engineering)

Why Reverse Engineer?

* Malware analysis

* Vulnerability or exploit research

* Check for copyright/patent violations

* Interoperability (e.g., understanding a file/protocol format)
e Copy protection removal



Legality

e Gray Area (a common theme)
e Usually breaches the EULA contract of software

* Additionally -- DMCA law governs reversing in U.S.

* “may circumvent a technological measure ... solely for the purpose of
enabling interoperability of an independently created computer program”



Two Techniques

e Static Code Analysis (structure)
e Disassemblers

* Dynamic Code Analysis (operation)
* Tracing / Hooking
* Debuggers

 Combination of the two works best in my experience



Disassembly

"E,g‘f‘igggn Opcode ModR/M sIB Displacement Immediate
Uptofour  1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of  opcode (if required) (if required) displacement  data of
1 byte each of 1.2, 0r4 1.2,0r4
(optional) / \ bytes or none  bytes or none

7 6 5 32 0 7 6 5 32 0
Mod O&?c{e R/M Scale | Index Base
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

11101011 00000110

OxEB Ox06 JMP +6

p T,

01010000

Bits

Ox50

PUSH EAX

Hex Bytes

Instructions
(human-readable)
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Difficulties

* Imperfect disassembly

* Benign Optlmlgatlons Compllers
* Constant folding e
* Dead code elimination S
* Inline expansion
* Loop unrolling

Ravi Sethi

o etc LICN ) '(.'.ﬁrlh')‘ D. Ullman

* Intentional Obfuscation
* Packing
* No-op instructions



Dynamic Analysis

* A couple techniques available:
* Tracing / Hooking
* Debugging



Time ... | Process Name

|

PID | Operation | Path

1246.... [ calc.exe
1246... T calc.exe
12:46.... [ calcexe

12.46.... [ calcexe
12:46... [ calc.exe
1246... T calc.exe
12.46... T calc.exe
12:46:... [ calcese
12.46.... T calc.exe
1246... [ calc.exe
12.46... [ calcexe
12.46... [ calc.exe
1246:... T calc.exe
12.46.... © calc.exe
12.46... T calcexe
12:46... [ calcexe
12.46... [ calcese
12.46.... [ calcexe
1246... [ calc.exe
12:46.... [ calcexe
12:46:... T calcexe
1246... [ calc.exe
1246... [ calcexe
1246 T calcexe

1246... T calcexe
12:46:..

5400 &Y Process Start

5400 &Y Thread Create

5400 A QueryNamelnfo... C:AWINDOWS \system32\cale. exe

5400 &Y Load Image C:AWINDDWS \system32\calc. exe

5400 &Y Load Image C:AWIND OWSA\system32intdll.dll

5400 SR QueryNamelnfo... C:AWINDOWS \system324cale. exe

5400 A CreateFile CAWINDOWS\Prefetch\CALC EXE-02CD57 34, pf
5400 S QueryStandardl... C:AWINDOWS\Prefetch\CALC. EXE-02CD 5734, pf
5400 =k FReadFile CAWINDOWSA\Prefetch\CALC. EXE-02CD5734, pf
5400 A CloseFile CAWINDOwWS\Prefetch\CALC. EXE-02CD57 34, pf
5400 Sk CreateFile C:

5400 ““h Queryinformatio... C;

5400 =k FileSystemContralC:

5400 K CreateFile C:A

5400 gQueryDilectow C:A

5400 A QuenDirectory C:\

5400 "=k ClozeFile C:\

5400 Sk CreateFile C:AWINDOWS

5400 A QuenDirectory  C:\WINDOWS

5400 A QuerDirectory  C:AWINDOWS

5400 Sk CloseFile C:AWINDOWS

5400 "Sh CreateFile CAWINDOWS\appPatch

5400 “hQuenDirectory  C:\WINDODWS\&ppPatch

5400 A QuenDirectory  C:\WINDOWS\AppPatch

5400 <k CloseFile C:AWIND OWS\AppPatch

5 Kernel supported API




Debugger Features

* Trace every instruction a program executes -- single step
* Or, let program execute normally until an exception

At every step or exception, can observe / modify:
* |Instructions, stack, heap, and register set

* May inject exceptions at arbitrary code locations

* INT 3 instruction generates a breakpoint exception
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Debugging Benefits

* Sometimes easier to just see what code does
* Unpacking

* just let the code unpack itself and debug as normal
* Most debuggers have in-built disassemblers anyway
* Can always combine static and dynamic analysis



Difficulties

* We are now executing potentially malicous code
* use an isolated virtual machine

* Anti-Debugging
» detect debugger and [exit | crash | modify behavior ]

 |sDebuggerPresent(), INT3 scanning, timing, VM-detection, pop ss trick, etc.,
etc., etc.

* Anti-Anti-Debugging can be tedious



Commonality of evasion

* Detect evidence of monitoring systems
* Fingerprint a machine/look for fingerprints

* Hide real malicious intent if necessary

* [FVM_PRESENT() or DEBUGGER_PRESENT()
* Terminate() // hide real intent

* ELSE
* Malicious_Behavior() //real intent



Taxonomy of malware evasion

Easier Application Installation, execution
Hardware Device name, drivers
Environment Memory and execution artifacts

Harder Behavior Timing



Example 1

* Device driver strings
* Network cards

thernet adapter Local flrea Connection:

Connection—specific DNS Suffix
Description o W e UMuvare fAccelerated AMD PCNet Adaptea
Physical Address. o & .
DHCP Enabled. . . . .
IP Addrecs. . . . . . .
Subnet Mask .

Default Gateway

DNS Servers .

255 .255 . @.0
{@.10.2.225
19.18.2.2

-
-
-
-
-
-
.
-
-
-
-
-




Example 2

* VMWare CommChannel (hooks)

Under VMware

VMware
Detection

Write Magic values to
EAX, EBX...

Write Magic values to
EAX, EBX...

Read Port ‘VX’

Useful
information
returned

Read Port ‘VX’

~

Under Plain
Machine

Write Magic values to
EAX, EBX...

Read Port ‘VX’

. Exception
No exception .
raised
VMware VMware

detected Not detected

Exception
raised




VMware detection code

MOV
MOV
MOV
MOV
IN

CMP

EAX, Ox564D5868 ; 'VMXh’

EBX, O ; Any value but not the MAGIC VALUE
ECX, OxO0A ; Get VMWare version

EDX, Ox5658 ; 'VX' (port number)

EAX, DX ; Read port

EBX, 0x564D5868 ; Is there a reply from VIMWare? ‘VMXh’

https://www.aldeid.com/wiki/VMXh-Magic-Value



Prevalence of evasion

* 40% of malware samples exhibit fewer malicious events with
debugger attached

e 4.0% exhibit fewer malicious events under VMware execution

Breakdown
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