Lecture 19 — Finding
Vulnerabilities

Stephen Checkoway
Oberlin College
Slides based on Bailey’s ECE 422

Finding Vulns

* Specification testing
* Automated white box tools
* Fuzzing

* Reverse engineering

The Need for Specifications

* Testing checks whether program implementation agrees with
program specification

* Without a specification, there is nothing to test!

* Testing is a form of consistency checking between implementation
and specification

* Recurring theme for software quality checking approaches
 What if both implementation and specification are wrong?

Developer |= Tester

* Developer writes implementation, tester writes specification

* Unlikely that both will independently make the
same mistake

 Specifications useful even if written by developer itself

* Much simpler than implementation
* Specification unlikely to have same mistake as implementation

Classification of Testing Approaches

Automated

Manual

Black-Box White-Box

Automated vs. Manual Testing

* Automated Testing:

* Find bugs more quickly

* No need to write tests

* |f software changes, no need to maintain tests
* Manual Testing:

* Efficient test suite

e Potentially better coverage

Black-Box vs. White-Box Testing

* Black-Box Testing:
e Can work with code that cannot be modified
* Does not need to analyze or study code
* Code can be in any format (managed, binary, obfuscated)

* White-Box Testing:
 Efficient test suite
* Potentially better coverage

How Good Is Your Test Suite?

* How do we know that our test suite is good?

e Too few tests: may miss bugs
* Too many tests: costly to run, bloat and redundancy, harder to maintain

* Example: SQLite
“As of version 3.20.0 (2017-08-01), the SQLite library consists of
approximately 125.4 KSLOC of C code. (KSLOC means thousands of
‘Source Lines Of Code’ or, in other words, lines of code excluding
blank lines and comments.) By comparison, the prOJect has 730 times
as much test code and test scripts -

* Nevertheless, 18 CVEs fixed between January and June 2020

Code Coverage

* Metric to quantify extent to which a program’s code
is tested by a given test suite
* Function coverage: which functions were called?
* Statement coverage: which statements were executed?
* Branch coverage: which branches were taken?

* Given as percentage of some aspect of the program executed in the tests

* 100% coverage rare in practice: e.g., inaccessible code
* Often required for safety-critical applications
* Example: SQLite has 100% branch coverage

Classification of Testing Approaches

Automated

v

Black-Box White-Box

Manual

Manual white-box testing

* Tests written by hand
* Full knowledge of source code/deployment/infrastructure
* Can test all parts

 Test running can be automated (e.g., on commits/deployment)

Test Driven Security

Cl

DevOps team Code
Repository

cb

laaS

Automated
Deployment

" Public service

Security
tests

1

Security
tests

Security
tests

A

A

"

(Security team

(.')

m

GitHub

O

\‘gﬂz)

/ TRAVIS

git push WEDNRGE Travis CI
TR :

push

circleci

Circle ClI

webhook)

__—* docker

Docker Hub

)

amazon

web services

Jenkins

AWS

Classification of Testing Approaches

Automated

Manual

v
4

Black-Box White-Box

Automated white-box testing

* Tests created automatically/dynamically

* Godefroid et al. “Automated Whitebox Fuzz Testing”
* Record trace of program on well-formed inputs
* Symbolic execution to capture constraints on input
* Negate a constraint, use a constraint solver to derive new input, run on that
input
 American fuzzy lop
* Compile-time instrumentation
* Genetic algorithms guided by the instrumentation

* Tools exist

Automated

Sample Penetration Test - CORE IMPACY
Flo Ede Vew Modkiss Tools Help

whlte box testing tools

=10}]

D@ s e a2 BEBEE P %

- EI",L,A Zie
Af+ #2 focolhost
8 localagent

Rapid Penetration Test

ER: : ioiormation Gathering

o 2 Attack and Penetration

= 3 :Local Information Gathering
o 4 : Privilege Escalation

& S:Clean Up

= 6 :Report Generation

<
4%\ RPT (Advarced /'

%82 192.168.36.55

Architecture: 0

[4 ‘\Quu.k info ,(‘.i‘,'stefnloo/

Done

srage progress

.‘1..-:..\-.J s
S joe—— _I Started
= nrormacaor Gatherng

.

SHS2004 11:05:24 8N S92

american fuzzy lop 0.47b (readpng)

process timing overall results

' ’ iths : 195
0
1

0 hrs,
0 hrs,
none seen yet
0 days, O hrs,

38 (19.49%)
0 (0.00%)

0 days,
0 days,

4 min, 43
0 min, 26

secC
secC

1 51

map

sec
coverage

min,

cycle progréég

1217 (7.43%)
rage : 2.55 bits/tuple
fnndwngb 1n depth
paths 128 (65.64%)
85 (43.59%)
0 (0 unique)
1 (1 unique)
path geometry

interest 32/8
0/9990 (0.00%)
654k

- 2306/sec
fuzzwnq strategy yields
. - 88/14.4k, 6/14.4k, 6/14.4k

0/1804, 0/1786 1/1750

31/126k, 3/45.6k, 1/17.8k

1/15.8k, 4/65.8k, 6/78.2k

34/254k, 0/0

2876 B/931 (61.45% gain)

178
114

Classification of Testing Approaches

Automated

Manual

v
i

Black-Box White-Box

Manual black-box testing

 Tester interacts with the system in a black-box fashion

* Crafts ill-formed inputs, tests them, and records how the system
reacts

Web Pen Testing Simple Example

Enter username and
password

Includes
User

User authentication

Brute force

Includes
authentication

Show generic error

message Includes

Includes Harwest (guess) valid

user accounts

Application /

Server Lock account after N

failed login attempts

Includes

Hacker /
Malicious User

Includes

Dictionary attacks

~__Mitigates

Validate password
minimum length and
complexity

Classification of Testing Approaches

v v
v v

>

Manual Automated

Black-Box White-Box

Automated black-box testing

* Fuzzing components
* Test case generation
* Application execution
* Exception detection and logging

Test Case Generation

* Random Fuzzing

* “Dumb” (mutation-based) Fuzzing
* Mutate an existing input

* “Smart” (generation-based) Fuzzing
* Generate an input based on a model (grammar)

Mutation Fuzzer

e Charlie Miller’s “5 lines of Python” fuzzer
* Found bugs in PDF and PowerPoint readers

numwrites=random.randrange(
math.ceil((float(len(buf)) / FuzzFactor)))+1
for j in range(numwrites):
rbyte = random.randrange(256)

rn = random.randrange(len(buf))
buf[rn] = "%c"%(rbyte);

Reverse Engineering

* Reverse Engineering (RE) -- process of discovering the technological
principles of a [insert noun] through analysis of its structure, function,
and operation.

* The development cycle ... backwards

http://en.wikipedia.org/wiki/Process_(engineering)
http://en.wikipedia.org/wiki/Function_(engineering)

Why Reverse Engineer?

* Malware analysis

* Vulnerability or exploit research

* Check for copyright/patent violations

* Interoperability (e.g., understanding a file/protocol format)
e Copy protection removal

Legality

e Gray Area (a common theme)
e Usually breaches the EULA contract of software

* Additionally -- DMCA law governs reversing in U.S.

* “may circumvent a technological measure ... solely for the purpose of
enabling interoperability of an independently created computer program”

Two Techniques

e Static Code Analysis (structure)
e Disassemblers

* Dynamic Code Analysis (operation)
* Tracing / Hooking
* Debuggers

 Combination of the two works best in my experience

Disassembly

"E,g‘f‘igggn Opcode ModR/M sIB Displacement Immediate
Uptofour 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of 1.2, 0r4 1.2,0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 6 5 32 0
Mod O&?c{e R/M Scale | Index Base
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

11101011 00000110

OxEB Ox06 JMP +6

p T,

01010000

Bits

Ox50

PUSH EAX

Hex Bytes

Instructions
(human-readable)

WinGraphs32'="Graph ot sub 809950

_ % 4+ (Mo ez B[N
Control Flow Diagram
sub_8049ES0:
push ebp
1es1 al, al
moy ebp, esp
push esi
mov esi, ecK
push ebx
moy ecH, Eax
mov ebx, ed=
iz shori 1oc_8049E90
rue false
J. moy eax, ed=

cnp esi, 5 and eax, (FO0OR

=1z al cmp eax, 8000h 2

1est al, al ez al Basic Block

jnz shori 10c_8049E72 1es1 al, al

Jjz short 1oc_S049E94
| [:
rue false false rue
* + J.
st cl, cl iest cl, cl
Jz short 1oc_S049E33 Jjnz short 1oc_S049F12
false rue 1.I"Jl.'le false
Imo; eax, ?’I'J‘l]l]h cmp e?i o3
an eax =1z a
o dENMCELARASY, B p eax, 4000h ap esi, 9
)z 2= stz dl stz dl
imp short 1oc_8049EAC| |or eds, eax
| | Py Al Al |
| =

74.07% (0,0) 27 nodes, 161 edge segments, 1 crossings

Difficulties

* Imperfect disassembly

* Benign Optlmlgatlons Compllers
* Constant folding e
* Dead code elimination S
* Inline expansion
* Loop unrolling

Ravi Sethi

o etc LICN) '(.'.ﬁrlh')‘ D. Ullman

* Intentional Obfuscation
* Packing
* No-op instructions

Dynamic Analysis

* A couple techniques available:
* Tracing / Hooking
* Debugging

Time ... | Process Name

|

PID | Operation | Path

1246.... [calc.exe
1246... T calc.exe
12:46.... [calcexe

12.46.... [calcexe
12:46... [calc.exe
1246... T calc.exe
12.46... T calc.exe
12:46:... [calcese
12.46.... T calc.exe
1246... [calc.exe
12.46... [calcexe
12.46... [calc.exe
1246:... T calc.exe
12.46.... © calc.exe
12.46... T calcexe
12:46... [calcexe
12.46... [calcese
12.46.... [calcexe
1246... [calc.exe
12:46.... [calcexe
12:46:... T calcexe
1246... [calc.exe
1246... [calcexe
1246 T calcexe

1246... T calcexe
12:46:..

5400 &Y Process Start

5400 &Y Thread Create

5400 A QueryNamelnfo... C:AWINDOWS \system32\cale. exe

5400 &Y Load Image C:AWINDDWS \system32\calc. exe

5400 &Y Load Image C:AWIND OWSA\system32intdll.dll

5400 SR QueryNamelnfo... C:AWINDOWS \system324cale. exe

5400 A CreateFile CAWINDOWS\Prefetch\CALC EXE-02CD57 34, pf
5400 S QueryStandardl... C:AWINDOWS\Prefetch\CALC. EXE-02CD 5734, pf
5400 =k FReadFile CAWINDOWSA\Prefetch\CALC. EXE-02CD5734, pf
5400 A CloseFile CAWINDOwWS\Prefetch\CALC. EXE-02CD57 34, pf
5400 Sk CreateFile C:

5400 ““h Queryinformatio... C;

5400 =k FileSystemContralC:

5400 K CreateFile C:A

5400 gQueryDilectow C:A

5400 A QuenDirectory C:\

5400 "=k ClozeFile C:\

5400 Sk CreateFile C:AWINDOWS

5400 A QuenDirectory C:\WINDOWS

5400 A QuerDirectory C:AWINDOWS

5400 Sk CloseFile C:AWINDOWS

5400 "Sh CreateFile CAWINDOWS\appPatch

5400 “hQuenDirectory C:\WINDODWS\&ppPatch

5400 A QuenDirectory C:\WINDOWS\AppPatch

5400 <k CloseFile C:AWIND OWS\AppPatch

5 Kernel supported API

Debugger Features

* Trace every instruction a program executes -- single step
* Or, let program execute normally until an exception

At every step or exception, can observe / modify:
* |Instructions, stack, heap, and register set

* May inject exceptions at arbitrary code locations

* INT 3 instruction generates a breakpoint exception

BB481624

=
[
N o8
=
—
=

SRS E

03 00 P2 PRI R R

WA TIMWO=IMn

CPU - main thread, module ollydbg

Address |Hex dump Comment a

6A B84 PUSH @
ES 8S5CeBEGS | CALL <JMP.&KERNEL3Z.Get
SBDA MOy EDX, ERX
ES CeE26Do8 | CALL 884DF2F4
SA POFP EDX
24E280686 | CALL 984DF258
FBE26DBG | CALL ©884DF334

julalalalalsls o)
Ba12FFE4
EDX 7C9BEB94 ntdll.
EEX 7FFDRBGAG
ESF B812FFCa
EEF BB12FFF@
ES] 80080000

Dest=ol lydbg. 884EBS54

EDT 80088008
EIF 8848163E ol lydb

A 88 PUSH @ g
14F28088 CALL 884EBSS54 ollydt
POP ECX v
STHISTIST S S BT R 2T

SRR Ry R Ldy

Lo MO0

BA4EEBSH
BA4EEBSH
BA4EEBRG
AA4EEBEH
BA4EEBCH
AA4EEBDA
BA4EEBED
AA4EEBF G
98455158

Address

L)
7CE16D4F
PERBABRE
BORERGEE
i aFFDH 7FFDAGEE
1312FF04| SBS4AGED
G12FF0Z| BB12FFCE
% S92FFAAS
FFFFFFFF

Message

=

=

NN

(v]

=

S
WSS
Mmoo

L

Modu le C:~WINDOWSNWinSxS =86_Microsoft.lindows.Common—-Controls_ 659506
%g%gy Eg;nt gf main module

F 5
Breakpoint O”yDbg] '/
7

Debugger

Debugging Benefits

* Sometimes easier to just see what code does
* Unpacking

* just let the code unpack itself and debug as normal
* Most debuggers have in-built disassemblers anyway
* Can always combine static and dynamic analysis

Difficulties

* We are now executing potentially malicous code
* use an isolated virtual machine

* Anti-Debugging
» detect debugger and [exit | crash | modify behavior]

 |sDebuggerPresent(), INT3 scanning, timing, VM-detection, pop ss trick, etc.,
etc., etc.

* Anti-Anti-Debugging can be tedious

Commonality of evasion

* Detect evidence of monitoring systems
* Fingerprint a machine/look for fingerprints

* Hide real malicious intent if necessary

* [FVM_PRESENT() or DEBUGGER_PRESENT()
* Terminate() // hide real intent

* ELSE
* Malicious_Behavior() //real intent

Taxonomy of malware evasion

Easier Application Installation, execution
Hardware Device name, drivers
Environment Memory and execution artifacts

Harder Behavior Timing

Example 1

* Device driver strings
* Network cards

thernet adapter Local flrea Connection:

Connection—specific DNS Suffix
Description o W e UMuvare fAccelerated AMD PCNet Adaptea
Physical Address. o & .
DHCP Enabled.
IP Addrecs.
Subnet Mask .

Default Gateway

DNS Servers .

255 .255 . @.0
{@.10.2.225
19.18.2.2

-
-
-
-
-
-
.
-
-
-
-
-

Example 2

* VMWare CommChannel (hooks)

Under VMware

VMware
Detection

Write Magic values to
EAX, EBX...

Write Magic values to
EAX, EBX...

Read Port ‘VX’

Useful
information
returned

Read Port ‘VX’

~

Under Plain
Machine

Write Magic values to
EAX, EBX...

Read Port ‘VX’

. Exception
No exception .
raised
VMware VMware

detected Not detected

Exception
raised

VMware detection code

MOV
MOV
MOV
MOV
IN

CMP

EAX, Ox564D5868 ; 'VMXh’

EBX, O ; Any value but not the MAGIC VALUE
ECX, OxO0A ; Get VMWare version

EDX, Ox5658 ; 'VX' (port number)

EAX, DX ; Read port

EBX, 0x564D5868 ; Is there a reply from VIMWare? ‘VMXh’

https://www.aldeid.com/wiki/VMXh-Magic-Value

Prevalence of evasion

* 40% of malware samples exhibit fewer malicious events with
debugger attached

e 4.0% exhibit fewer malicious events under VMware execution

Breakdown
8000

7000

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -

I
All Malicious DBG-Evade VM-Evade

