Lecture 17 — Browser Security

Stephen Checkoway
University of lllinois at Chicago
CS 487 — Fall 2017
Some slides from Bailey's ECE 422

Documents

 Browser's fundamental role is to display documents comprised of
- HTML

- JavaScript
- Style sheets (CSS)
- Images
- Sounds
- Movies
- Plugin content
> Flash
> SilverLight
> QuickTime

Document Object Model (DOM)

 The browser allows scripts to
- add/modify/delete/style the DOM elements
- make changes in response to user actions (e.g., clicks)
- submit forms
- browse to a new document altogether

e Scripts in one document can modify another document
- We say that Page A scripts Page B

Scripting other documents

e Very powerful capability and without constraints would be dangerous
* Consider having attacker.com open while logging into chase.com

e |f attacker.com can script chase.com, what could happen?

® ® / [attacker.com X\D e @ e /) Signin - chase.com X\D o

& C | ® attacker.com e~ BR © : & C | & JPMorgan Chase and Co. [US] | https://secure07a.chase.com/webjauth/da... ¢ | By B @y i

CHASE O
. 4 -

-

Relocation Services

Username o

Insurance Education Health

SO | Password &
» Auto Insurance » Bachelor Degree Programs » Affordable Health Care O A ~' - T P = —
» Disability Insurance » Business College » Allergies ; Q?; ",ﬁ || Remember me || Use token
* Health Insurance » Culinary Schools » Drug Treatments S _-.'A . " ‘;{% - \
* Home Owner Insurance » Nursing Schools » Erectile Dysfunction "“ 7-.‘.'- __,‘ . '?P' . -., .
» Life Insurance » Online Schools » Laser Eye Surgery A | :
» Travel Insurance » Photography Schools » Vasectomy Reversal 3 S Forgot username/password? > s R =

¥ g Not enrolled? Sign up now. >

Finance Travel Electronics
» Credit Counseling » Alaskan Cruises » Cell Phones

Clearly we need separation

e This is Risk #3 from last time

e Same Origin Policy (SOP)
- Goal: Partition documents into equivalence classes that can script each
other (including reading each others' content)

- Each document is assigned an origin and documents can script other
documents in the same origin

- We construct the origin from the URL

From URLSs to Origins

 General form of a URL
scheme://user.pass@host:port/path?querystring#fragment

 Most parts are optional giving URLs like
http://www.uic.edu/chicago
https://google.com?g=hello+world

e QOrigins are the triple (scheme, host, port)
What's the origin for http://www.uic.edu/chicago?

What's the origin for https://google.com?qg=hello+world"?

http://www.uic.edu/chicago?

From URLSs to Origins

 General form of a URL
scheme://user.pass@host:port/path?querystring#fragment

 Most parts are optional giving URLs like
http://www.uic.edu/chicago
https://google.com?g=hello+world

e QOrigins are the triple (scheme, host, port)
What's the origin for http://www.uic.edu/chicago?

(http, www.uic.edu, 80)

What's the origin for https://google.com?qg=hello+world"?

http://www.uic.edu/chicago?

From URLSs to Origins

 General form of a URL
scheme://user.pass@host:port/path?querystring#fragment

 Most parts are optional giving URLs like
http://www.uic.edu/chicago
https://google.com?g=hello+world

e QOrigins are the triple (scheme, host, port)
What's the origin for http://www.uic.edu/chicago?

(http, www.uic.edu, 80)

What's the origin for https://google.com?qg=hello+world"?
(https, google.com, 443)

http://www.uic.edu/chicago?

Origins

 Why does the origin include the host?

Origins

 \Why does the origin include the host?
- To prevent attacker.com from scripting bank.com

Origins

 \Why does the origin include the host?
- To prevent attacker.com from scripting bank.com

 Why does the origin include the scheme?

Origins

 \Why does the origin include the host?
- To prevent attacker.com from scripting bank.com

 Why does the origin include the scheme?
- If not, then http://bank.com can script https://bank.com. An "on-path"”
attacker could inject <script>...</script> into http://bank.com which
affects https://bank.com

Origins

 \Why does the origin include the host?
- To prevent attacker.com from scripting bank.com

 Why does the origin include the scheme?
- If not, then http://bank.com can script https://bank.com. An "on-path"”
attacker could inject <script>...</script> into http://bank.com which
affects https://bank.com

 Why does the origin include the port?

Origins

 \Why does the origin include the host?
- To prevent attacker.com from scripting bank.com

 Why does the origin include the scheme?
- If not, then http://bank.com can script https://bank.com. An "on-path"”
attacker could inject <script>...</script> into http://bank.com which
affects https://bank.com

 Why does the origin include the port?
- Think about multiple web servers run by different users on the same
machine. Without including the port, https://host.com:8443 could script
the entirely unrelated https://host.com

Not the end of the story

 Documents (and thus scripts) can load elements from other origins
iIncluding images, scripts, style sheets, and flash objects
- Loading these elements endorses their content and the included
elements are considered to be in the loading document's origin

* Conversely, documents (and thus scripts) can submit forms which sends
data from the document to some server
- Submitting forms declassifies the data sent

e Cross-0Origin Resource Sharing (CORS) can enable cross-origin requests

Web Review | HTTP

il.com

gmai

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

gmail.com

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK
gmail.com
<html>
<head>
<script>alert(‘Hil!’)</script>
</head> A\
<img src=“//gmail.com/img.png” /|

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

http://gmail.com/

gmail.com
says: <html>
Hi! <head>
<script>alert(‘Hil!’)</script>
</head>

<img src="“//gmail.com/img.png”/

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

http://gmail.com/ gmail.com

<html>

says:
Hi! <head>
<script>alert(‘Hil!’)</script>
</head>

<img src="“//gmail.com/img.png”/ 1%
<&

GET /img.png HTTP/1.1
Host: gmail.com

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

http://gmail.com/ gmail.com

<html>

says:
Hi! <head>
<script>alert(‘Hil!’)</script>
</head>

<img src="“//gmail.com/img.png”/ ‘
S

GET /img.png HTTP/1.1

Host: gmail.com
e

HTTP/1.1 200 OK

<89>PNG"™M ...
—

Web Review | HTTP

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

http://gmail.com/ gmail.com

<html>

says:
Hi! <head>
<script>alert(‘Hil!’)</script>
</head>

<img src="“//gmail.com/img.png”/ ‘
«———

GET /img.png HTTP/1.1

Host: gmail.com
e

HTTP/1.1 200 OK

<89>PNG"™M ...
—

Web Review | AJAX (jQuery style)

gmail.com

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

gmail.com

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK
e gmajl.com
<script>
S.get(‘http://gmail.com/msgs.json

function (data) { alert(data) });® ,.

stiet

o":" ::::
HHIHIH]
a¥le

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK
>.get(‘http://gmail.com/msgs.json’, | |<script>
function (data) { alert(data) }); S.get(‘http://gmail.com/msgs. jsor
—— function (data) { alert(data) });

</script> N O

'd
.......
v::v‘ :::

,,,,,,,,

gmail.com

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK
>.get(‘http://gmail.com/msgs.json’, | |<script>
function (data) { alert(data) }); S.get(‘http://gmail.com/msgs.json
_—— function (data) { alert(data) });

gmail.com

| . .“’",
e 113
\ M
\ 1 3 »
< > \ i i
| \ .
\
\ LM ’
\ \ whiwriiesls
‘‘‘‘‘‘‘
\ \ . LM
| \ D ETHIHIHE
X T
R
,,,,,,, ot
. prev vt
sl '
azieiieiisd
a"a.o:,o_:
Pla”r -
M i
o iie
'.' -
31
I
)
B _etet
332228

GET /msgs.json HTTP/1.1
Host: gmail.com

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK
>.get(‘http://gmail.com/msgs.json’, | |<script>
function (data) { alert(data) }); S.get(‘http://gmail.com/msgs.json
_—— function (data) { alert(data) });!

gmail.com

J.J‘::..,
" ’ 1
\ ‘... i
/script \ M
\ M
\ \ » » .
< > \ 1311
r] p : T Tt
\ ST

..........
::::::::
L

GET /msgs.json HTTP/1.1 '

Host: gmail.com
e

HTTP/1.1 200 OK

{ new_msgs: 3}
—

Web Review | AJAX (jQuery style)

GET / HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

™M_{http://gmail.com/
>.24says:
{ new_msgs: 3}

gmail.com

msgs.json’, .<"script>
(data) }); S.get(‘http://gmail.com/msgs.json

function (data) { alert(data) });@

GET /msgs.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msgs: 3}
—

Web Review | Same-0rigin Policy (SOP)

(evil!)
facebook.com

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com .

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

ar
at :‘.::.'.
ar phlat
»

2" .l'.l 4
» L

<script>
S.get(‘http://gmail.com/msgs.json’,

function (data) { alert(data); }
</script>

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com |

o2

’ » .

1 21N
H BT

HTTP/1.1 200 OK N

<script>
S.get(‘http://gmail.com/msgs.json’,

function (data) { alert(data); }
</script>

Gget(‘http://gmail.com/msgs.json’,
function (data) { alert(data); }

v il
f - .

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK N

<script>
S.get(‘http://gmail.com/msgs.json’,

function (data) { alert(data); }
</script>

gget(‘http://gmail.com/msgs.json’,
function (data) { alert(data); }

GET /msgs.json HTTP/1.1 gmail.com
Host: gmail.com -

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK N

0 ot
1 Hi i
IV 1Y

<script>
S.get(‘http://gmail.com/msgs.json’,

function (data) { alert(data); }
</script>

gget(‘http://gmail.com/msgs.json’,
function (data) { alert(data); }

GET /msgs.json HTTP/1.1 gmail.com
Host: gmail.com -

HTTP/1.1 200 OK

{ new_msgs: 3 }
—

Web Review | Same-0rigin Policy (SOP)

(evil!)
GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK N

0 ot
1 Hi i
IV 1Y

<script>
S.get(‘http://gmail.com/msgs.json’,

function (data) { alert(data); }
</script>

gget(‘http://gmail.com/msgs.json’,
function (data) { alert(data); }

GET /msgs.json HTTP/1.1 gmail.com
Host: gmail.com -

HTTP/1.1 200 OK

.{"new_msgs: 3}

Web Review | Same-0rigin Policy (SOP)

facebook.com

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com -

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

- artor
wraricily
::.n' M

HTTP/1.1 200 OK .

. .
seiietiarie
''''''''
.........
'''''''''
‘ e
.........
.....

<img src=“http://gmail.com/img.png”
D S EEEE—

GET /img.png HTTP/1.1
Host: gmail.com

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

- artor
wraricily
::.n' M

HTTP/1.1 200 OK '\ B

M
,"-::o::-'

- .
.........
R
-
%"

<img src=“http://gmail.com/img.png”
D S EEEE—

GET /img.png HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

<89>PNG"™M ...
&

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

GET /img.png HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

<89>PNG"M ...
—

Web Review | Same-0rigin Policy (SOP)

facebook.com

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com -

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

- .

setiersiond
prioeilerls
v T

.
av
.....

-

4 3
......
AT
It

phmtiatl
''''''''''
’:a':":',’-
........

I

HTTP/1.1 200 OK

<script src="“http://gmail.com/chat.js”’/> '

GET /chat.js HTTP/1.1
Host: gmail.com

Web Revie
w | Same-0Origin Policy (SOP)

IC_il(liTt/ HTTP/1.1
st: facebo
o facebook.com

v ’
"""""
‘00:’5":

Tl

'::..‘l::u.
"""""""
,,,,,,,,
Saricataels
""""""""
it
"""""""
‘‘‘‘‘‘‘‘‘‘
..........
‘‘‘‘‘‘‘‘
oooooo

l. s

HTTP/1.1 200 OK

<SC|ipt src=“h . Im |
ttp//g ail.com/chat.js”/
[] :=’

G .
HE:t-/Chat.JS HTTP/1.1
. gmail.com |

HTTP/1.1 200 OK

-4 v
T
::o::::::S:
.......
.c::.!‘:::'
.-a'

S.get(‘h
ttp://gmai |
on (data)y alert(datagij}s)o]

. ¢’
sracziiels]
st

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

3414

.‘::.:’.:‘:

| ::'::":":
.......

......
gasriziie
...........
. LTI T
.........
‘‘‘‘‘‘

‘
M
. - .
afintieais
"""""""""
ehascet®els

i.get(‘http://gmail.com/chat.json’, HTTP/1.1 200 OK
function (data) { alert(data); })

<script src="“http://gmail.com/chat.js”’/> '
D S —

GET /chat.js HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

» -
R
""""""""""
‘‘‘‘‘‘‘
........

function (data){ alert(data); })
—

.

wlptoe
I
L4
LML

Web Review | Same-0rigin Policy (SOP)

gmail.com

i.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); })

Web Review | Same-0rigin Policy (SOP)

gmail.com

i.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); })

GET /chat.json HTTP/1.1
Host: gmail.com

Web Review | Same-0rigin Policy (SOP)

gmail.com

i.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); })

GET /chat.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msg: { from: “Bob”, msg: “Hi!”}}
D

Web Review | Same-0rigin Policy (SOP)

gmail.com

i.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); })

GET /chat.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msg: { from: “Bob”, msg: “Hi!”}}

Iframes

 Complete document inside a document
<Iframe src="https://somewhere.com/page.html!"></iframe>

 The contents of each iframe belong to its source origin
(https, somewhere.com, 443) for the iframe above

* The iframe element itself belongs to its containing document

e |frames obey the SOP

Web Review | Same-0rigin Policy (SOP)

facebook.com

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com -

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

HTTP/1.1 200 OK

Web
Revie
W
| Sa
me-0rigin Poli
icy (SO
P)

E []
/ /

ooooooooo

L4

.......
........
..........
..........
...........
llllllllll
lllllllll
o-c-o"'.-:
""""""""
uu'::‘.:::
.......
--”":"
.“

HT
TP/1.1 200 OK

<ifram
e src="
=“http:
tp://gmail
.com/
chat”
/>

GET

/ch

o at HT

t: gmail.c-(r)l:r)#.1

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

Tt

whlar
...........
| .:...:,a:,-
-

ratsiirieal

» . .
o:.-:,-;,.'-
..':o’:v':c

. M
eflasienie:
''''''''''
'''''''''
........
.........

HTTP/1.1 200 OK

<iframe src=“http://gmail.com/chat”/>
c——

GET /chat HTTP/1.1
Host: gmail.com

UQ

HTTP/1.1 200 OK

<script> o i
$.get(‘http://gmail.com/chat.json/’, (RN

function (data) { alert(data); });
</script>

<~

Web Review | Same-0rigin Policy (SOP)

GET / HTTP/1.1 facebook.com
Host: facebook.com |

FEE
ooooo

’

whler

............

oooooooo
000000

T

S.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); }) HTTP/1.1 200 OK

r 1
.‘.,o:,-:,-
..........
nnnnnnn
L4

M
’ o
’:o',l'-':n
,,,,,,,,,,
.......
444444
Sease?” 54

<iframe src=“http://gmail.com/chat”/>
c——

GET /chat HTTP/1.1
Host: gmail.com

UQ

HTTP/1.1 200 OK

<script> . Ei
$.get(‘http://gmail.com/chat.json/’, (RN

function (data) { alert(data); });
</script>

<~

Web Review | Same-0rigin Policy (SOP)

gmail.com

5.get(‘http://gmail.com/chat.json’,
function (data) { alert(data); })

Web Review | Same-0rigin Policy (SOP)

gmail.com

5.get(‘http://gmail.com/chat.json’,

function (data) { alert(data); })

GET /chat.json HTTP/1.1
Host: gmail.com

Web Review | Same-0rigin Policy (SOP)

gmail.com

5.get(‘http://gmail.com/chat.json’,

function (data) { alert(data); })

GET /chat.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{f new_msg: { from: “Bob”, msg: “Hi!”’}}
D

Web Review | Same-0rigin Policy (SOP)

gmail.com

{ new_msgs: { from: “Bob”,
msg: “Hil”}}

GET /chat.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msg: { from: “Bob”, msg: “Hil”}}
Xt

Beware finer-grained origins

* Not all web features respect the SOP

 Example: Cookies can be include a path

- |In order to read a cookie with a path, the path of the document’'s URL

must extend the path of the cookie

Cookie path: /a/b/c
Document path: /a/b <- Cannot read the cookie

/a/b/c/d <- Can read the cookie
- This is "finer-grained” than the standard SOP

- |s this a problem?

Cookie paths example cont.

e Since documents in the same page can script each other, page /a/b can

still read the cookie:

- Create an iframe with src set to /a/b/c/d (where this the path of some
real document that can read the cookie value)

- Since the iframe is in the same origin, page /a/b can inject a script
element into the iframe's document

- The Injected script reads the cookie value and sends It back to the
containing page

* Cookie paths should not be used as a security boundary

Mixed content

 Documents can contain elements loaded over both http and https

 Browsers indicate that this is insecure (by not displaying a lock icon) on
the page with mixed content

 Other documents in the same origin are not similarly marked as insecure

® © ® /1 https:/iwww.cs.ic.eduj~s/ x \L_\ e ® © ® /1y cs487: secure Computer & x \{_\ e

@ https://www.cs.uic.edu/~s/temp/mixed.htm| 'i'?] r[". R O : < C [@ Secure | https://www.cs.uic.edu/~s/teaching/cs487/2017-fall/ {?] rﬂ R c[.l

CS 487: Secure Computer Systems — Fall 2017

< C
o

Instructor: Professor Stephen Checkoway sfc@uic.edu
Lectures: Monday, Wednesday, Friday. 13:00-13:50 in Thomas Beckham Hall 180G
Office Hours: Monday. 14:00-15:00 in SEO 1236

Course Links

» Schedule and Readings

e Piazza Forum

Course Description, Goals, and Objectives

This course will cover software vulnerabilities, exploitation techniques, and mitigation
measures. It is designed as a projects-based course where you will get hands-on experience
finding vulnerabilities and writing exploits.

Mixed content

 Documents can contain elements loaded over both http and https

 Browsers indicate that this is insecure (by not displaying a lock icon) on
the page with mixed content

 Other documents in the same origin are not similarly marked as insecure

® © ® /1 https:/iwww.cs.ic.eduj~s/ x \L_\ e ® © ® /1y cs487: secure Computer & x \{_\ e

@ https://www.cs.uic.edu/~s/temp/mixed.htm 'i}] rill @ @ : &~ C l @ Secure | https://www.cs.uic.edu/~s/teaching/cs487/201 7-fall/ g r‘n @ ft’l :

o r—

CS 487: Secure Computer Systems — Fall 2017
Instructor: Professor Stephen Checkoway sfc@uic.edu
Loaded over http Lectures: Monday, Wednesday, Friday. 13:00-13:50 in Thomas Beckham Hall 180G
Office Hours: Monday. 14:00-15:00 in SEO 1236
Yy

Course Links

» Schedule and Readings

e Piazza Forum

Course Description, Goals, and Objectives

This course will cover software vulnerabilities, exploitation techniques, and mitigation
measures. It is designed as a projects-based course where you will get hands-on experience
finding vulnerabilities and writing exploits.

Mixed content

 Documents can contain elements loaded over both http and https

 Browsers indicate that this is insecure (by not displaying a lock icon) on
the page with mixed content

e Other documents IN the same origin are not similarly marked as insecure

ece / [https:/jwww.cs.uic.edu/~s e ® © ® /1y cs487: secure Computer & x \{_\ e

/lwww.cs.uic.edu/~ 1}] E""l R © : < C | & Secure | https://www.cs.uic.edu/~s/teaching/cs487/2017-fall/ Ty ﬂ""l R "'[’l :

CS 487: Secure Computer Systems — Fall 2017
Instructor: Professor Stephen Checkoway sfc@uic.edu
Loaded over http Lectures: Monday, Wednesday, Friday. 13:00-13:50 in Thomas Beckham Hall 180G
Office Hours: Monday. 14:00-15:00 in SEO 1236
y

Course Links

» Schedule and Readings

e Piazza Forum

Course Description, Goals, and Objectives

This course will cover software vulnerabilities, exploitation techniques, and mitigation
measures. It is designed as a projects-based course where you will get hands-on experience
finding vulnerabilities and writing exploits.

Mixed content

Documents can contain elements loaded over both http and https

Browsers indicate that this is insecure (by not displaying a lock icon) on
the page with mixed content

 Other documents in the same origin are not similarly marked as insecure
® e /[}J https://www.cs.uic.edu/~s/ x\a e @00 /[} CS 487: Secure Computer ! X\Q o
/lwww.cs.uic.edu/~ w fgR @ : < C | & Secure | https://www.cs.uic.edu/~s/teaching/cs487/2017-fall/ w| R G

I gm CS 487: Secure Computer Systems — Fall 2017
Instructor: Professor Stephen Checkoway sfc@uic.edu
Loaded over http Lectures: Monday, Wednesday, Friday. 13:00-13:50 in Thomas Beckham Hall 180G
Office Hours: Monday. 14:00-15:00 in SEO 1236

Course Links

» Schedule and Readings

e Piazza Forum

Course Description, Goals, and Objectives

This course will cover software vulnerabilities, exploitation techniques, and mitigation
measures. It is designed as a projects-based course where you will get hands-on experience
finding vulnerabilities and writing exploits.

Mixed content

Mixed content

e |s that an issue?

Mixed content

e |s that an issue?

* Yes, script injected from the element loaded over http could script other
pages Iin the same origin...

Mixed content

e |s that an issue?

* Yes, script injected from the element loaded over http could script other
pages Iin the same origin...

...except modern browsers explicitly do not run scripts loaded via http In
an https page, so not really any more

Cross-origin attacks

Setup

 Web attacker
- Controls one or more domains (e.g., attacker.com, evil.com)
- Can cause the victim to browse to a page serving JavaScript at one of
these domains

* Victim is logged in to bank.com (or any other interesting site)

Quick review

Quick review

e Can the attacker's JavaScript read bank.com?

Quick review

e Can the attacker's JavaScript read bank.com?
- No. Same origin policy

Quick review

e Can the attacker's JavaScript read bank.com?
- No. Same origin policy

 The attacker's script uses XMLHttpRequest("https://bank.com") which
causes the browser to fetch https://bank.com and return its contents. Can

the attacker's script read the response?

Quick review

e Can the attacker's JavaScript read bank.com?
- No. Same origin policy

 The attacker's script uses XMLHttpRequest("https://bank.com") which
causes the browser to fetch https://bank.com and return its contents. Can

the attacker's script read the response?
- No. Same origin policy

Quick review

e Can the attacker's JavaScript read bank.com?
- No. Same origin policy

 The attacker's script uses XMLHttpRequest("https://bank.com") which
causes the browser to fetch https://bank.com and return its contents. Can
the attacker's script read the response?
- No. Same origin policy

e Can the attacker's script use
XMLHttpRequest("https://bank.com/transfer?from=victim&to=attacker")?

Quick review

e Can the attacker's JavaScript read bank.com?
- No. Same origin policy

 The attacker's script uses XMLHttpRequest("https://bank.com") which
causes the browser to fetch https://bank.com and return its contents. Can

the attacker's script read the response?
- No. Same origin policy

e Can the attacker's script use
XMLHttpRequest("https://bank.com/transfer?from=victim&to=attacker")?
- Yes! Same origin policy doesn't prevent this. The script just cannot read

the response

Cross-site request forgery (CSRF)

 [he attacker’'s site instructs the victim's browser to make a request to an
honest site (e.g., using XMLHttpRequest or even just an enticing link)

 An XMLHttpRequest allows both GET and POST

 The browser sends all relevant cookies, including any sessions cookies
identifying the logged in victim

 From the server's perspective, it looks exactly like a normal request from
the victim's browser

Cross-site Request Forgery (CSRF)

POST /login?user=bob&pass=abc123 HTTP/1.1
Host: bank.com

bank.com

HTTP/1.1 200 OK
Set-Cookie: login=fde874

Cross-site Request Forgery (CSRF)

fde874 = bob

POST /login?user=bob&pass=abc123 HTTP/1.1
Host: bank.com

HTTP/1.1 200 OK
Set-Cookie: login=fde874

Cross-site Request Forgery (CSRF)

fde874 = bob

GET /account HTTP/1.1
Host: bank.com
Cookie: login=fde874

Cross-site Request Forgery (CSRF)

fde874 = bob

GET /account HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK

s $378.42
< =

Cross-site Request Forgery (CSRF)

ﬁ?u Click me!!!
http://bank.com/transfer?to=badguy&amt=100 fde8/74 = bob

Cross-site Request Forgery (CSRF)

ﬁ%) Click me!!! .
http://bank.com/transfer?to=badguy&amt=100 fde8/74 = bob

GET /transfer?to=badguy&amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde8/4

Cross-site Request Forgery (CSRF)

ﬁ?u Click me!!! .
http://bank.com/transfer?to=badguy&amt=100 fde8/74 = bob

GET /transfer?to=badguy&amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK

Transfer complete: -$100.00
-

Why not make requests directly?

e Use the browser's state: The browser sends cookies, client certificates,
basic auth credentials in the request

e Set the browser's state: The browser parses and acts on responses, even
if the JavaScript cannot read the responses

* |Leverage the browser's network connectivity: The browser can connect to
servers the malicious site cannot reach (e.g., those behind a firewall)

CSRF Defenses

 Need to “authenticate” each user action originates from the legitimate site

 Only needed for actions that change state (E.g., POST but not GET)
- Why isn't it needed for GET?

* Possiblilities
- Secret token
- HTTP Referer header (yes, Referer not Referrer, it was misspelled)

- Custom HTTP header
- Origin header

Secret token

 Hidden form field with the token value

 The token should be unpredictable to attackers

e Random numbers work, but then need to be stored server side
* Using crypto, we can do better (HMAC)

 The token should be sent along with every POST and checked by the
server

* This is a hassle for dynamically-generated content since it needs to
include the tokens

 What prevents malicious script from fetching the page (e.g., with
XMLHttpRequest), reading the token, and then sending a response with
the token?

Example CSRF token

<form action="/transfer" method="post">
<lnput type="hidden" name="token" wvalue="8d64">
To <input type="text" name="to">

Amount <input type="text" name="amount">

<lnput type="submit" value="Transfer">

</form>

®@ e / [https://www.cs.uic.edu/~s/ X\E S
<« =2 C [B Secure | https://www.cs.uic.edu/~s/tem... {3] El B © :

To |ioe
Amount |25
| Transfer |

CSRF Defenses

HTTP/1.1 200 OK
Set-Cookie: login=fde874

fde874 = bob

<form action="/transfer” method="post">
<input type="hidden" name="token" value="8d64">

-

This is not actually how POST data is encoded and sent, but the principle is the same

CSRF Defenses

HTTP/1.1 200 OK
Set-Cookie: login=fde874

fde874 = bob

<form action="/transfer” method="post">
<input type="hidden" name="token" value="8d64">

-

POST /transfer?to=joe&amt=25&token=8d64 HTTP/1.1 |
J/ Host: bank.com
/ Cookie: login=fde874

This is not actually how POST data is encoded and sent, but the principle is the same

CSRF Defenses

HTTP/1.1 200 OK
Set-Cookie: login=fde874

fde874 = bob

<form action="/transfer” method="post">
<input type="hidden" name="token" value="8d64">

—

POST /transfer?to=joe&amt=25&token=8d64 HTTP/1.1 |
J/ Host: bank.com

/ Cookie: login=fde874

. e ———————————

HTTP/1.1 200 OK

Transfer complete: -525.00
D

This is not actually how POST data is encoded and sent, but the principle is the same

Referer header

e Sent by the browser and contains the URL of the page containing the link
that was clicked or form that was submitted

 Easy to handle server side, just check that the request comes with the
correct Referer header

 However, it is frequently stripped by the browser or middle boxes (for
privacy reasons)

o |t's stripped less often over HTTPS since middle boxes can't modify
content

Custom HTTP header

« XMLHttpRequest supports adding custom headers but browsers disallow
them on cross-origin requests

e Server can check that the custom header is present

Origin header

 The evolution of the Referer header but only contains the scheme, host,
and port, not the full URL

* As with the Referer and custom headers, the server checks the Origin is
correct

e Supported by all major browsers

e Unlike custom headers, it's part of the standard

Cross-site scripting (XSS)

¢ XSS is a method for attackers to embed content (often JavaScript) in
another page

 [wo basic types
- Reflected XSS
- Stored XSS

Reflected XSS

 Web attacker causes the victim to click a link to a legitimate page where
the link contains some script

* The server includes the script verbatim in the legitimate page which is
sent back to the browser

 The browser interprets it as script coming from the legitimate origin

Cross-Site Scripting (XSS

Cross-Site Scripting (XSS)

GET /?user=Bob HTTP/1.1

GET /?user=Bob HTTP/1.1

HTTP/1.1 200 OK

"f’ = HellO, Bob!
R —

Cross-Site Scripting (XSS)

GET /?user=<u>Bob</u> HTTP/1.1

Cross-Site Scripting (XSS)

GET /?user=<u>Bob</u> HTTP/1.1

HTTP/1.1 200 OK

Hello, <u>Bob</u>!
«—

Cross-Site Scripting (XSS)

;eChO ”HellO, "o, $ GET[”user"] . u!";é

HTTP/1.1 200 OK

Hello, <script>alert(‘X5S’)</script>!

Cross-Site Scripting (XSS)

;eChO ”HellO, "o, $ GET[”user"] . u!";é

HTTP/1.1 200 OK

Hello, <script>alert(‘X5S’)</script>!

Cross-Site Scripting (XSS)

;eChO ”HellO, "o, $ GET[”user"] . u!";é

HTTP/1.1 200 OK

Hello, <script>alert(‘X5S’)</script>!

Click me!!!
http://vuln.com/?user=<script>alert(‘XSS’)</script>

Cross-Site Scripting (XSS) Attack

(evill)
GET / HTTP/1.1 facebook.com
Host: facebook.com

oooooo
.

wt :‘:::’.
v

HTTP/1.1 200 OK \F

oooo
) B

<iframe src="“http://gmail.com/?user=<script
S.get(‘http://gmail.com/msgs.json’,
function (data) { alert(data); })
”></iframe>

Cross-Site Scripting (XSS) Attack

(evill)
GET / HTTP/1.1 facebook.com
Host: facebook.com

HTTP/1.1 200 OK

et
.

a .‘D‘:o'

"""""""

llllll

» # &

<iframe src=“http://gmail.com/?user=<script
S.get(‘http://gmail.com/msgs.json’,
&/ function (data) { alert(data); })
”></iframe>

Cross-Site Scripting (XSS) Attack

(evill)
GET / HTTP/1.1 facebook.com
Host: facebook.com

HTTP/1.1 200 OK L F

<iframe src=“http://gmail.com/?user=<script
S.get(‘http://gmail.com/msgs.json’,
&/ function (data) { alert(data); })
”></iframe>

GET /?user= HTTP/1.1
Host: gmail.com gmail.com

Cross-Site Scripting (XSS) Attack

(evill)
GET / HTTP/1.1 facebook.com
Host: facebook.com

HTTP/1.1 200 OK L F

<iframe src=“http://gmail.com/?user=<script
S.get(‘http://gmail.com/msgs.json’,
&/ function (data) { alert(data); })
”></iframe>

GET /?user= HTTP/1.1
Host: gmail.com gmail.com

HTTP/1.1 200 OK

Hello,

+

Cross-Site Scripting (XSS) Attack

(evill)
GET / HTTP/1.1 facebook.com
Host: facebook.com

HTTP/1.1 200 OK

a¥r
A T
. ’

e
. :l"u':

<iframe src=“http://gmail.com/?user=<script
S.get(‘http://gmail.com/msgs.json’,
&/ function (data) { alert(data); })
”></iframe>

GET /?user= HTTP/1.1
Host: gmail.com gmail.com

HTTP/1.1 200 OK

Hello,

+

Cross-Site Scripting (XSS) Attack

(evil!)
facebook.com

Cross-Site Scripting (XSS) Attack

(evil!)
facebook.com

GET /msgs.json HTTP/1.1
Host: gmail.com

Cross-Site Scripting (XSS) Attack

(evil!)
facebook.com

GET /msgs.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msgs: 3}
—

Cross-Site Scripting (XSS) Attack

(evil!)
facebook.com

http://gmail.com/
says:
f new_msgs: 3}

GET /msgs.json HTTP/1.1
Host: gmail.com

HTTP/1.1 200 OK

{ new_msgs: 3}
—

XSS capabilities

 Execute arbitrary scripts in the context (i.e., Origin) of the vulnerable
server

 Manipulate the DOM of the vulnerable page

e Submit/read forms (including any CSRF tokens)
 Read cookies

* Install event handlers

* |n essence, anything that JavaScript can do!

Stored XSS

e Some web sites serve user-generated content but fail to properly sanitize
the user's input

 The attacker POSTs some HTML with JavaScript on the page (e.g., a post
on a forum)

 When victims visit the page, the attacker's script is served and the
browser (not realizing it came from the attacker) executes it as normal

* The script can do anything JavaScript can do!

Example: Samy worm

 Myspace allowed users to insert HTML in their profiles, but disallowed
<script>

 Some browsers support JavaScript inside CSS
<div style="background:url(‘javascript: eval(...)")">

 Myspace disallowed the word javascript but Internet Explorer (at the time
anyway) allowed
java
script
which bypassed their filter

e Other filters were bypassed by using eval()

Example: Samy worm

e Samy Kamkar discovered this and put some script in his profile

 \When his page was viewed by a victim, the victim's browser would run the
script which would modify the victim's profile to include "but most of all,
samy iIs my hero" as well as the script itself

e Within 20 hours, over one million people's profiles were infected
 Myspace had to go offline to fix the problem

 Kamkar pleaded guilty to a felony and got 3 years probation, a fine, and
restricted computer use (now he makes cool YouTube videos!)

