Lecture 11 — Control-flow Hijacking Defenses

Stephen Checkoway
Oberlin College
Slides adapted from Miller, Bailey, and Brumley

Control Flow Hijack:
Always control + computation

shellcode (aka payload)

computation

code injection

return-to-libc

Heap metadata overwrite
return-oriented programming

padding &buf

control

Same principle,

different mechanism

Control Flow Hijacks

... happen when an attacker gains control of
the instruction pointer.

Two common hijack methods:
* buffer overflows
e format string attacks

Control Flow Hijack Defenses

Bugs are the root cause of hijacks!
* Find bugs with analysis tools
* Prove program correctness

Mitigation Techniques:

* Canaries

e Data Execution Prevention/No eXecute
* Address Space Layout Randomization

CANARY / STACK COOKIES

http://en.wikipedia.org/wiki/File:Domestic_Canary_-_Serinus_canaria.jpg

“NA’x68 . “\XEF\xBE\XAD\xDE”

#include<string.h>

int main(int argc, char **argv) {

char buf[64];

strcpy(buf, argv[1]);

Dump of assembler code for function main:

0x080483e4 <+0>: push Z%ebp
0x080483e5 <+1>: mov %esp, %ebp
0x080483e7 <+3>: sub $72,%esp
0x080483ea <+6>: mov 12 (%ebp) ,%eax
0x080483ed <+9>: mov 4(%eax) ,%eax
0x08048310 <+12>: mov %eax,4(%esp)
0x080483f4 <+16>: lea -64(%ebp) , %eax
0x080483f7 <+19>: mov %eax, (%esp)
Ox080483fa <+22>: call 0©x8048300 <strcpy@plt>
0x080483ff <+27>: leave

Ox08048400 <+28>: ret

argv
argc

return addr

caller’s ebp

<— %ebp

buf
(64 bytes)

‘ argv[1]

buf

<— %esp

“NA’x68 . “\XEF\xBE\XAD\xDE”

#include<string.h>
int main(int argc, char **argv) {
char buf[64];
strcpy(buf, argv[1l]);
} corrupted argc
overwritten [yIFANb =SS
Dump of assembler code for function main: overwritten | AAAA
0x080483e4 <+0>: push Z%ebp
0x080483e5 <+1>: mov %esp, %ebp
0x080483e7 <+3>: sub $72,%esp
0x080483ea <+6>: mov 12 (%ebp) ,%eax
0x080483ed <+9>: mov 4(%eax) ,%eax
0x08048310 <+12>: mov %eax,4(%esp)
0x080483f4 <+16>: lea -64(%ebp) , %eax
0x080483f7 <+19>: mov %eax, (%esp)
0x080483fa <+22>: call ©x8048300 <strcpy@plt> ‘
0x080483ff <+27>: leave
Ox08048400 <+28>: ret

argv

<— %ebp

(64 in total)

<
<
<
<

<— %esp

Sta C kG ud rd [Cowen etal. 1998]

Idea:
. arg 2
* prologue introduces a -
canary word between return return addr
addr and locals caller's bp BN
callee-save
* epilogue checks canary CANARY
before function returns I0Cals

Wrong Canary => Overflow

<— %esp

gcc Stack-Smashing Protector (ProPolice)

Dump of assembler code for function main:

0x08048440 <+0>: push %ebp Compiled with v4.6.1:
0x08048441 <+1>: mov %esp,%ebp gcc -fstack-protector -01 ..

0x08048443 <+3>: sub $76,%esp

return addr

caller’s ebp

0x08048451 <+17>: mov 12 (%ebp) ,%eax
0x08048454 <+20>: mov 4(%eax) ,%eax
0x08048457 <+23>: mov %eax,4(%esp)
Ox0804845b <+27>: lea -68(%ebp) , %eax
0x0804845e <+30>: mov %eax, (%esp)

0x08048461 <+33>: call ©x8048350 <strcpy@plt>

CANARY

buf
(64 bytes)

0x08048477 <+55>: leave
Ox08048478 <+56>: ret

Canary should be HARD to Forge

* Terminator Canary
— 4 bytes: 0,CR,LF,-1 (low->high)
— terminate strcpy(), gets(), ...

e Random Canary
— 4 random bytes chosen at load time

— stored in a guarded page
— need good randomness

ldeas for defeating stack canaries?

Use targeted write, e.g., format string
Overwrite data pointer first

return addr

Overwrite function pointer loaded and caller’s ebp
used from higher up the stack CANARY

memcpy buffer overflow with fixed canary
Canary leak

buf
(64 bytes)

Bypass: Data Pointer Subterfuge

Overwrite a data pointer first...

return addr

int *ptr', caller’s ebp
char buf[64]; CARARY

ptr

memcpy (buf, userl);
*ptr = user2;

buf
(64 bytes)

12

Overwrite function pointer higher up

void contrived(const char *user, void (*fun)(char *)) {
char buf[64];

strcpy(buf, user); fun
fun(buf); User
} return addr

 Overflow buffer to overwrite fun on the stack celers ey
CANARY

* Tricky! Compiler can load fun into a register
before strcpy (this can happen with
optimization)

* Works better with structs with function w
pointers (e.g., OpenSSL) or C++ classes (64 bytes)

memcpy/memmove with fixed canary

* Fixed canary values like 00 0d Oa ff (0, CR, NL, -1) are designed
to terminate string operations like strcpy and gets

* However, they are trivial to bypass with memcpy vulnerabilities

Canary leak I: two vulnerabilities

* Exploit one vulnerability to read the value of the canary

* Exploit a second to perform a buffer overflow on the stack,
overwriting the canary with the correct value

Canary leak Il: pre-fork servers

* Some servers fork worker processes to handle connections

* |[n the main server process
— Establish listening socket
— Fork all the workers; if any die, fork a new one

* |n the worker process (in a loop)
— Accept a connection on the listening socket
— Process request

Canary leak Il: pre-fork servers

* This design interacts poorly with stack canaries

* Since each worker is forked from the main process, it initially
has exactly the same memory layout and contents, including
stack canary values!

e Attacker can often learn the canary a byte at a time by
overflowing just a single byte of the canary, trying values 00
through ff until it doesn’t crash; then move on to the next byte

What is “Canary”

Wikipedia: “the historic practice of using canaries in coal mines, since they would be
affected by toxic gases earlier than the miners, thus providing a biological warning
system.”

The American Humane Association
monitored the animal action.

No animal was harmed in the

making of this televisionprogram-:

AMERICAN
+H HUMANE
ASSOCIATION.

Mim & Yelevivion Owit

DATA EXECUTION PREVENTION (DEP) /
NO EXECUTE (NX)/

EXECUTE DISABLED (XD)/

EXECUTE NEVER (XN)

\

How to defeat exploits?

shellcode padding &buf

computation + control

)

l \
| |
DEP Canary

20

mNet Q WINDOWS 10 CLOUD INNOVATION SECURITY

MORE

AMD, Intel put antivirus tech into chips

The companies plan to soon release technology that will allow
processors to stop many computer attacks before they occur.

l ByMichael Kanellos | January 8, 2004 -- 23:22 GMT (15:22 PST) | Topic: Intel

LAS VEGAS--Advanced Micro Devices and Intel plan to soon release
technology that will allow processors to stop many attacks before they
occur.

Execution Protection by AMD, technology contained in AMD's Athlon 64
chips, prevents a buffer overflow, a common method used to attack
computers. A buffer overflow essentially overwhelms a computer's
defense systems and then inserts a malicious program in memory that the
processor subsequently executes.

With Execution Protection, data in the buffer can only be read and,
therefore, is prevented from doing its dirty work, John Morris, director of
marketing at AMD, said in an interview Thursday at the Consumer

Electronics Show here.

RECOMMENDE

The Web Deve

Bootcamp
Tramning provided |

DOWNLOAD NOW

RELATED S

Internet «
Intel lau
retail plz
millionnr
investmu

> 4 Hardwar

Memory permissions

* Set (or clear) a bit in a page table entry to prevent code from
being executed

 Enforced by hardware: Trying to fetch an instruction from a
page marked as non-executable causes a processor fault

Data Execution Prevention

shellcode padding

Mark stack as
non-executable

using NX bit

(still a Denial-of-Service attack!)

23

WA X

shellcode padding

Each memory page is
exclusively either

(still a Denial-of-Service attack!)

writable or executable.

24

Actually a pretty old idea

MIPS R2000 (from 1986) has per-page readable, writable,
executable bits

Intel 80386 (from 1985) does not. Mapped pages are always
readable and executable

Intel 80286 (from 1982) introduced 16-bit “protected mode”
where code, data, and stack segments can be separated

The 386 has a 32-bit “protected mode” but most OSes set
code, data, and stack segments to be the entire virtual address
space

Physical Address Extension

* Intel added an extension to increase the size of allowable
physical memory beyond 4 GB

* PAE changed the page table format, added a third level of
translation, and added the execute disable bit (but the OS has
to enable both PAE and NX support)

* x86-64 uses the PAE format and thus supports NX

ADDRESS SPACE LAYOUT
RANDOMIZATION
(ASLR)

addr of buf
(Oxffffd5d8)

caller’s ebp

Shellcode

buf[0] =

\
\

Oxf(ffd 618

Oxffffd5d8

addr of buf
(Oxffffd5d8)

caller’s ebp

buf

Shellcode

\
\
\

Oxffffé(lZS

i
i
i

Oxffffe3f

f

7
/

‘/

é

OLoJ0 Oxffffd5d8

28

ASLR

Traditional exploits need precise addresses

— stack-based overflows: location of shell code
— return-to-libc: library addresses (we’ll talk about this next time)

* Problem: program’s memory layout is fixed

— stack, heap, libraries etc.

e Solution: randomize addresses of each region!

Oxcobooeee == TASK_SIZE
2 }-Random stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

3GB << program break
brk

|start_brk
Random brk offset

end_data
~ PrOTOLYPE™S |start_data
end_code

Skl A 0x08048000
i %]

=

Image source: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Running cat Twice

* Runl
082ac000-082cd000 irw-p 082ac000 00:00 @ Cheap]
D7dfed00-b7153000 ir-xp 00000000 08:01 1750463 /1ib/i686/cmov/1libc-2.7.s0
D7153000-b7154000 :r--p 00155000 08:01 1750463 /1ib/1686/cmov/1ibc-2.7.s0
b7f54000-b756000 :rw-p 00156000 08:01 1750463 /1ib/i1686/cmov/1ibc-2.7.s0
bf966000-bf97b00d :rw-p bffebddd 00:00 0 [stack]

* Run 2

086e8000-08709000 irw-p 0868000 00:00 0 [heap]
b7d98000‘b786f000§r-xp 00000000 08:01 1750463 /1ib/i686/cmov/1ibc~2.7.
b7eef000-b7ef0000§r—-p 00155000 08:01 1750463 /1ib/1686/cmov/1ibc-2.7.
D7ef0000-b7ef2000 :rw-p 00156000 08:01 1750463 /1ib/i686/cmov/1ibc-2.7.
bf902000-bf917000 :rw-p bffebdod 00:00 0 [stack]

31

Bits of randomness (32-bit x86)

* Depends on the OS, but roughly
— Program code and data: O bits (fixed addresses)
— Heap: 13 bits (2713 possible start locations)
— Stack: 19 bits (2219 possible start locations)
— Libraries: 8 bits (278 possible start locations)

* With position-independent executables (PIE)
— Program code and data: 8 bits

— Others the same

e 64-bit has much more randomness

Support for ASLR added over time

* |nitially by the PaX team for Linux
* All major OSes support it for applications
e Kernel ASLR now supported by major OSes

s DEP + ASLR a panacea?

* Not really
* Next time: DEP bypass via code reuse attacks
* How can we bypass ASLR?

Oxcobooeee == TASK_SIZE
2 }-Random stack offset

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

3GB << program break
brk

|start_brk
Random brk offset

end_data
~ PrOTOLYPE™S |start_data
end_code

Skl A 0x08048000
i %]

=

Image source: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Bypassing ASLR

Non-PIE binaries have fixed code and data addresses

Each region has a random offset, but fixed layout => learning a
single address in a region gives every address in the region

Older Linux would let local attackers read the stack start
address from /proc/<pid>/stat

Servers that re-spawn (even with new randomization) can be
brute forced when number of bits of randomness is low

