
Lecture 03 – Control Flow

Stephen Checkoway

CS 343 – Fall 2020

Adapted from Michael Bailey’s ECE 422



Outline

• Computer

– CPU

– Instructions

• The Stack (x86)

– What is a stack

– How it is used by programs

– Technical details

• Attacks

• Buffer overflows

• Adapted from Aleph One’s “Smashing the Stack for Fun 
and Profit”



“Insecurity”?

Level-2 Problem: “Weakness”
Factors that predispose systems to vulnerability

Level-1 Problem: “Vulnerability”
Specific errors that could be exploited in an assault.

Level-0 Problem: “Exploit”
Actual malicious attempt to cause harm.

“Attack”

exploit,

vulnerabilities 

are ingredients



Why Study Attacks?

• Identify vulnerabilities so they can be fixed.

• Create incentives for vendors to be careful.

• Learn about new classes of threats.

– Determine what we need to defend against.

– Help designers build stronger systems.

– Help users more accurately evaluate risk.



static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UInt16 signatureLen)

{

OSStatus err;

...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

...

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

}



Virtual memory

• Each running process has its own virtual memory space

– Your computer has a bunch of RAM

– RAM is an array of bytes indexed from 0

– It would be bad if any process could read/write any byte of memory

– The OS and hardware carve up memory and hand it out to processes

Image from Wikipedia



Virtual address space

• OS presents each process with the fiction that it 

has access to the entire valid range of memory 

from index 0 to the maximum index (2^32 - 1 or 

2^64 - 1)

• It does this by mapping virtual addresses used by 

processes to physical addresses used by the 

hardware

Image from Wikipedia



Virtual address space layout

• Each function called in a program is allocated 

a stack frame on the call stack; it stores

– The return address

– Local variables

– Arguments to functions it calls

• The software maintains two pointers

– Stack pointer: points to the top (lowest address) 

of the stack

– Frame pointer: points to the call frame (optional)

Image from https://blog.adafruit.com/2019/07/19/the-pitfalls-of-uninitialized-memory-programming-c-rust/



example.c

void foo(int a, int b) {

char buf1[10];

}

void main() {

foo(3,6);

}



C stack frames

} main
Local variables

SP

FP



C stack frames

} main
Local variables

function args
SP

FP



C stack frames

} main
Local variables

function args

return address
SP

FP



C stack frames

} main
Local variables

function args

return address

} foo

SP

main’s FP

FP



C stack frames

} main
Local variables

function args

return address

} foo

SP

main’s FP
FP



C stack frames

} main
Local variables

function args

return address

} fooSP

main’s FP

Local variables
FP


