
CS 487: Secure Computer Systems Fall 2017

Return-oriented programming worksheet

Recall that a (traditional) return-oriented program is structured as a sequence of addresses of code and
data on the stack. Each address (represented here by an arrow to code) points to a sequence of code ending in
ret. For example, the following fragment of a return-oriented program loads 0xCAFEF00D into register ecx,
subtracts 27 from register al, and then loads 0xDEADBEEF into register eax.

0xDEADBEEF

−−−−−−−−−−−−−→ popl %eax; ret

0xCAFEF00D

−−−−−−−−−−−−−→ popl %ecx; subb $27, %al; ret

Note that the ordering was important due to the unwanted subtraction.

Useful instruction sequences

We’re going to use these instruction sequences (and only these) to construct the gadgets on the next sheet.

1 popl %esi

ret

2 popl %ebx

popl %ebp

ret

3 addl %ecx , %eax

ret

4 sub %ebx , %eax

ret

5 imul %eax , %ebx

ret

6 xorl %eax , %eax

ret

7 andl -16(%ebp), %ebx

ret

8 orl %esi , %eax

ret

9 movl %ebx , %ecx

ret

10 movl %ecx , 32(% eax)

ret

11 movl (%eax), %ecx

ret

Gadgets

Let X, Y , and Z be constant addresses each pointing at 4 bytes of memory. We’re going to treat X, Y ,
and Z like the addresses of global variables x, y, and z in C. Construct the following gadgets by filling
in the empty stack diagrams with circled numbers representing the addresses of the corresponding useful
instruction sequences and data like 42, X or Y − 32. Start at the bottom of the stack diagram and move
up. There are larger diagrams on the back of both pages.

1. Load immediate gadget. Set X to be the four byte constant c. (In C, x = c;)
2. Move gadget. Copy four bytes from X to Y . (In C, y = x;)
3. Load gadget. Treat the four bytes at X as a pointer; load four bytes from it and store in Y . (In C,

y = *x;)
4. Add gadget (tricky!). Load ints from X and Y , add them, and store in Z. (In C, z = x + y;)
5. Store gadget (tricky!). Treat the four bytes at Y as a pointer; load four bytes from X and store at the

address pointed to by the pointer. (In C, *y = x;)

