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® Context-free grammars are important for programming languages and compilers
® Decidability helps you think about what problems you cannot solve with computers

® Complexity helps you think about what problems you can solve or verify quickly
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language like ATy, what languages can you decide with this new capability?

Time bounds aren’t the only option, we can consider space constraints too

What languages can you decide if you use a polynomial amount of space?
PSPACE

What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

Same thing but with nondeterminism. NL = co-NL (bizarre!)

What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?

What if instead of TMs, you have circuits?

g
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Exam topics

Broadly speaking: Everything through today

Regular languages, context-free languages
DFAs, NFAs, regular expressions, CFGs, PDAs, TMs

Conversions between the various machines, grammars, and expressions (where
doable).

Converting a CFG to CNF

Closure properties of regular, context-free, decidable, and Turing-recognizable
languages

Decision problems from language theory (e.g., Apra, EQtm, ALLcEg)
Mapping reductions

Polynomial time mapping reductions

P, NP, EXPTIME

What it means for a language to be NP-complete



Types of exam questions

The questions from the exam fall into these types
® True/false questions with explanation
® Constructions
® Proofs

® One extra credit problem



Exam question break down (probably; the exam is still being written)

® Five true/false questions (4 points each)

® Two constructions (20 points each)

® Four proofs (20 points, 15 points, 15 points, 20 points)
® Extra credit (20 points, no partial credit)

Things that won't be on the exam
® Pumping lemma for context-free languages questions

® Proving that a particular language is NP-complete (you may be asked to prove
that under some assumptions, some language is NP-complete, but you won't be
asked to give a polynomial time reduction )



Examples

@ Regular languages are closed under perfect shuffle
{alblagbg‘“anbn | each a;,b; € ¥, ajay+++a, € A and b1by--+b, € B}

® Turing-recognizable languages are closed under intersection
© Prove that if A<, B and B <, C, then A<, C

O Convert a CFG to a PDA

® CoMPOSITES = {(n) | n > 0 is a composite integer} € NP

® Any others you want me to do
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