
CS 301
Lecture 26 – Conclusion

Stephen Checkoway

May 2, 2018

1 / 9



What’s this class good for anyway?

• Thinking logically will help any time you want to make an argument

2 / 9



What’s this class good for anyway?

• Thinking logically will help any time you want to make an argument

• Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

2 / 9



What’s this class good for anyway?

• Thinking logically will help any time you want to make an argument

• Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

• Context-free grammars are important for programming languages and compilers

2 / 9



What’s this class good for anyway?

• Thinking logically will help any time you want to make an argument

• Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

• Context-free grammars are important for programming languages and compilers

• Decidability helps you think about what problems you cannot solve with computers

2 / 9



What’s this class good for anyway?

• Thinking logically will help any time you want to make an argument

• Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

• Context-free grammars are important for programming languages and compilers

• Decidability helps you think about what problems you cannot solve with computers

• Complexity helps you think about what problems you can solve or verify quickly

2 / 9



So what’s next?

• Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(n log n) is great, O(n

2
) can be too slow to use

3 / 9



So what’s next?

• Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(n log n) is great, O(n

2
) can be too slow to use

• Sometimes, O(n
2
) works great and an equivalent O(n log n) algorithm takes

longer (small inputs)

3 / 9



So what’s next?

• Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(n log n) is great, O(n

2
) can be too slow to use

• Sometimes, O(n
2
) works great and an equivalent O(n log n) algorithm takes

longer (small inputs)

• More computability!

3 / 9



So what’s next?

• Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(n log n) is great, O(n

2
) can be too slow to use

• Sometimes, O(n
2
) works great and an equivalent O(n log n) algorithm takes

longer (small inputs)

• More computability!

• More complexity! We’ve only scratched the surface

3 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

• What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

• What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

• Same thing but with nondeterminism. NL = co-NL (bizarre!)

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

• What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

• Same thing but with nondeterminism. NL = co-NL (bizarre!)

• What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

• What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

• Same thing but with nondeterminism. NL = co-NL (bizarre!)

• What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

• What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?

4 / 9



More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?

• Time bounds aren’t the only option, we can consider space constraints too

• What languages can you decide if you use a polynomial amount of space?
PSPACE

• What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) ⊆ SPACE(f

2
(n)) (Savitch’s theorem);

compare to time where there’s an exponential blow up

• What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

• Same thing but with nondeterminism. NL = co-NL (bizarre!)

• What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

• What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?

• What if instead of TMs, you have circuits?

4 / 9



Complexity “zoo”

L

5 / 9



Complexity “zoo”

NL = co-NL

L

5 / 9



Complexity “zoo”

P

NL = co-NL

L

5 / 9



Complexity “zoo”

RP

P

NL = co-NL

L

5 / 9



Complexity “zoo”

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”

BPP

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”

NP

BPP

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”

co-NPNP

BPP

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”
PSPACE = NPSPACE

co-NPNP

BPP

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Complexity “zoo”
EXPTIME

PSPACE = NPSPACE

co-NPNP

BPP

ZPP

co-RPRP

P

NL = co-NL

L

5 / 9



Exam topics

Broadly speaking: Everything through today

• Regular languages, context-free languages

• DFAs, NFAs, regular expressions, CFGs, PDAs, TMs

• Conversions between the various machines, grammars, and expressions (where
doable).

• Converting a CFG to CNF

• Closure properties of regular, context-free, decidable, and Turing-recognizable
languages

• Decision problems from language theory (e.g., ADFA, EQTM, ALLCFG)

• Mapping reductions

• Polynomial time mapping reductions

• P, NP, EXPTIME

• What it means for a language to be NP-complete

6 / 9



Types of exam questions

The questions from the exam fall into these types

• True/false questions with explanation

• Constructions

• Proofs

• One extra credit problem

7 / 9



Exam question break down (probably; the exam is still being written)

• Five true/false questions (4 points each)

• Two constructions (20 points each)

• Four proofs (20 points, 15 points, 15 points, 20 points)

• Extra credit (20 points, no partial credit)

Things that won’t be on the exam

• Pumping lemma for context-free languages questions

• Proving that a particular language is NP-complete (you may be asked to prove
that under some assumptions, some language is NP-complete, but you won’t be
asked to give a polynomial time reduction )

8 / 9



Examples

1 Regular languages are closed under perfect shuffle

{a1b1a2b2⋯anbn ∣ each ai, bi ∈ Σ, a1a2⋯an ∈ A and b1b2⋯bn ∈ B}

2 Turing-recognizable languages are closed under intersection

3 Prove that if A ≤p B and B ≤p C, then A ≤p C

4 Convert a CFG to a PDA

5 Composites = {⟨n⟩ ∣ n > 0 is a composite integer} ∈ NP

6 Any others you want me to do

9 / 9


	What's next?

