CS 301

Lecture 26 — Conclusion

Stephen Checkoway

May 2, 2018



What's this class good for anyway?

® Thinking logically will help any time you want to make an argument



What's this class good for anyway?

® Thinking logically will help any time you want to make an argument

® Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)



What's this class good for anyway?

® Thinking logically will help any time you want to make an argument

® Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

® Context-free grammars are important for programming languages and compilers



What's this class good for anyway?

Thinking logically will help any time you want to make an argument

Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

Context-free grammars are important for programming languages and compilers

Decidability helps you think about what problems you cannot solve with computers



What's this class good for anyway?

® Thinking logically will help any time you want to make an argument

® Regular expressions are incredibly useful; learn to use them in your favorite
programming language (and when not to use them)

® Context-free grammars are important for programming languages and compilers
® Decidability helps you think about what problems you cannot solve with computers

® Complexity helps you think about what problems you can solve or verify quickly



So what's next?

® Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(nlogn) is great, O(n”) can be too slow to use



So what's next?

® Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(nlogn) is great, O(n”) can be too slow to use

* Sometimes, O(n”) works great and an equivalent O(nlogn) algorithm takes
longer (small inputs)



So what's next?

® Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(nlogn) is great, O(n”) can be too slow to use

* Sometimes, O(n”) works great and an equivalent O(nlogn) algorithm takes
longer (small inputs)

® More computability!



So what's next?

® Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(nlogn) is great, O(n”) can be too slow to use

* Sometimes, O(n”) works great and an equivalent O(nlogn) algorithm takes
longer (small inputs)

® More computability!

® More complexity! We've only scratched the surface



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE

® What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE

® What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

® What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE

® What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

® What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

® Same thing but with nondeterminism. NL = co-NL (bizarre!)



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE

® What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

® What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

® Same thing but with nondeterminism. NL = co-NL (bizarre!)

® What if you give the TM access to randomness and allow the TM to be wrong
sometimes?



More computability and complexity?

® What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

® Time bounds aren’t the only option, we can consider space constraints too

® What languages can you decide if you use a polynomial amount of space?
PSPACE

® What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

® What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

® Same thing but with nondeterminism. NL = co-NL (bizarre!)

® What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

® What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?



More computability and complexity?

What if we give our TM access to an “oracle” that in a single step can decide a
language like ATy, what languages can you decide with this new capability?

Time bounds aren’t the only option, we can consider space constraints too

What languages can you decide if you use a polynomial amount of space?
PSPACE

What languages can you decide with a nondeterministic TM in a polynomial
amount of space? NSPACE(f(n)) € SPACE(f*(n)) (Savitch's theorem);
compare to time where there’'s an exponential blow up

What if you have a read-only input and a logarithmic amount of space to work
with? (Effectively, you have a constant number of pointers) L

Same thing but with nondeterminism. NL = co-NL (bizarre!)

What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?

What if instead of TMs, you have circuits?

g



Complexity “zoo”



Complexity “zoo”



Complexity “zoo”



Complexity “zoo”

RP



Complexity “zoo”




Complexity “zoo”




Complexity “zoo"










Complexity “zoo"

PSPACE = NPSPACE



EXPTIME

Complexity “zoo”
PSPACE = NPSPACE



Exam topics

Broadly speaking: Everything through today

Regular languages, context-free languages
DFAs, NFAs, regular expressions, CFGs, PDAs, TMs

Conversions between the various machines, grammars, and expressions (where
doable).

Converting a CFG to CNF

Closure properties of regular, context-free, decidable, and Turing-recognizable
languages

Decision problems from language theory (e.g., Apra, EQtm, ALLcEg)
Mapping reductions

Polynomial time mapping reductions

P, NP, EXPTIME

What it means for a language to be NP-complete



Types of exam questions

The questions from the exam fall into these types
® True/false questions with explanation
® Constructions
® Proofs

® One extra credit problem



Exam question break down (probably; the exam is still being written)

® Five true/false questions (4 points each)

® Two constructions (20 points each)

® Four proofs (20 points, 15 points, 15 points, 20 points)
® Extra credit (20 points, no partial credit)

Things that won't be on the exam
® Pumping lemma for context-free languages questions

® Proving that a particular language is NP-complete (you may be asked to prove
that under some assumptions, some language is NP-complete, but you won't be
asked to give a polynomial time reduction )



Examples

@ Regular languages are closed under perfect shuffle
{alblagbg‘“anbn | each a;,b; € ¥, ajay+++a, € A and b1by--+b, € B}

® Turing-recognizable languages are closed under intersection
© Prove that if A<, B and B <, C, then A<, C

O Convert a CFG to a PDA

® CoMPOSITES = {(n) | n > 0 is a composite integer} € NP

® Any others you want me to do



	What's next?

