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• Context-free grammars are important for programming languages and compilers

• Decidability helps you think about what problems you cannot solve with computers

• Complexity helps you think about what problems you can solve or verify quickly
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So what’s next?

• Algorithms! It turns out models of computation really do matter; computers
aren’t Turing machines; O(n log n) is great, O(n
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More computability and complexity?

• What if we give our TM access to an “oracle” that in a single step can decide a
language like ATM, what languages can you decide with this new capability?
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• What if you give the TM access to randomness and allow the TM to be wrong
sometimes?

• What if you require it give the right answer and “on average” takes polynomial
time but on some inputs can take more?

• What if instead of TMs, you have circuits?
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Exam topics

Broadly speaking: Everything through today

• Regular languages, context-free languages

• DFAs, NFAs, regular expressions, CFGs, PDAs, TMs

• Conversions between the various machines, grammars, and expressions (where
doable).

• Converting a CFG to CNF

• Closure properties of regular, context-free, decidable, and Turing-recognizable
languages

• Decision problems from language theory (e.g., ADFA, EQTM, ALLCFG)

• Mapping reductions

• Polynomial time mapping reductions

• P, NP, EXPTIME

• What it means for a language to be NP-complete
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Types of exam questions

The questions from the exam fall into these types

• True/false questions with explanation

• Constructions

• Proofs

• One extra credit problem
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Exam question break down (probably; the exam is still being written)

• Five true/false questions (4 points each)

• Two constructions (20 points each)

• Four proofs (20 points, 15 points, 15 points, 20 points)

• Extra credit (20 points, no partial credit)

Things that won’t be on the exam

• Pumping lemma for context-free languages questions

• Proving that a particular language is NP-complete (you may be asked to prove
that under some assumptions, some language is NP-complete, but you won’t be
asked to give a polynomial time reduction )
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Examples

1 Regular languages are closed under perfect shuffle

{a1b1a2b2⋯anbn ∣ each ai, bi ∈ Σ, a1a2⋯an ∈ A and b1b2⋯bn ∈ B}

2 Turing-recognizable languages are closed under intersection

3 Prove that if A ≤p B and B ≤p C, then A ≤p C

4 Convert a CFG to a PDA

5 Composites = {⟨n⟩ ∣ n > 0 is a composite integer} ∈ NP

6 Any others you want me to do
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