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The classes TIME(¢(n)) and P

Let t : N - R" be a function. The time complexity class TIME(¢(n)) is the set of
languages that are decidable by an O(#(n))-time TM

P is the class of languages that are decidable in polynomial time on a TM,

o0
P = | | TIME(n")
k=0



The classes NTIME(#(n)) and NP

Let t : N - R" be a function. The nondeterministic time complexity class
NTIME(#(n)) is the set of languages that are decidable by an O(¢(n))-time NTM

NP is the class of languages that are decidable in polynomial time on an NTM,

(0]
NP = | | NTIME(n")
k=0

This is not the most convenient definition of NP; we’ll get a better one shortly



Example: Boolean satisfiability
SAT = {(¢) | ¢ is a satisfiable boolean formula}

Previously, we showed that 2-SAT € P and this relied on the formulae in 2-SAT being
in 2-CNF; there's no such restriction here

Eg,o=(xxA(yVvZ)A(zAyAZ)
Is ¢ satisfiable?



Example: Boolean satisfiability
SAT = {(¢) | ¢ is a satisfiable boolean formula}

Previously, we showed that 2-SAT € P and this relied on the formulae in 2-SAT being
in 2-CNF; there's no such restriction here

Eg,o=(xxA(yVvZ)A(zAyAZ)
Is ¢ satisfiable?

Yes. x =T, y = F, z = I satisfies it. Therefore, (¢) € SAT



Example: SAT € NP
We need to construct a NTM that decides SAT in polynomial time
N = "“On input (¢),
@ For each variable in ¢, nondeterministically assign it a truth value

® Using the assignments, evaluate ¢. If ¢ = T, then accept; otherwise reject”



Example: SAT € NP

We need to construct a NTM that decides SAT in polynomial time
N = "“On input (¢),
@ For each variable in ¢, nondeterministically assign it a truth value
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The essential feature of a NTM is the ability to nondeterministically make a choice
(choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and
rejects w if every branch rejects (this is a decider, remember)



Example: SAT € NP

We need to construct a NTM that decides SAT in polynomial time
N = “On input (¢),

@ For each variable in ¢, nondeterministically assign it a truth value

® Using the assignments, evaluate ¢. If ¢ = T, then accept; otherwise reject”

The essential feature of a NTM is the ability to nondeterministically make a choice
(choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and
rejects w if every branch rejects (this is a decider, remember)

If ¢ is satisfiable, then some branch of N's computation will select a satisfying
assignment so N will accept

If ¢ is not satisfiable, then every branch will reject so N will reject; thus L(N) = SAT

Both steps take polynomial time so SAT € NP



P € NP

Theorem
For every language A € P, A € NP. le., P S NP

How would we prove this?



P € NP

Theorem
For every language A € P, A€ NP. le., P € NP

How would we prove this?

Proof.
If A € P, then it is decided by a deterministic TM M in polynomial time.

We can construct an NTM NV that has identical behavior to M i.e., N doesn't use
nondeterminism.

Thus L(N) = L(M) and N runs in polynomial time



NP ¢ EXPTIME

Theorem

k
For every language A € NP, A € EXPTIME = U;:):o TIME(2" ). le,
NP ¢ EXPTIME

How would we prove this?



NP ¢ EXPTIME

Theorem X
For every language A € NP, A € EXPTIME = U;:):o TIME(2" ). le,
NP ¢ EXPTIME

How would we prove this?

Proof.
If Ais decided by an NTM N in nondeterministic polynomial time O(nk) then we can

k
construct a TM M that simulates N in (deterministic) time 20t O



P ¢ NP ¢ EXPTIME

It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict
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It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict

Put another way, one of the following statements is true
® P = NP and NP # EXPTIME;
e P+ NP and NP # EXPTIME; or
® P+ NP and NP = EXPTIME

Which one is true?



P ¢ NP ¢ EXPTIME

It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict

Put another way, one of the following statements is true
® P = NP and NP # EXPTIME;
e P+ NP and NP # EXPTIME; or
® P+ NP and NP = EXPTIME

Which one is true?

Fun fact: We don’t know which is true!



Partitioning a multiset

PARTITION = {(S) | S is a multiset of positive integers and
FACS st Ypea® = Yoesnath

Consider the multiset S = {1,1,2,3,5}. Is (S) € PARTITION?



Partitioning a multiset

PARTITION = {(S) | S is a multiset of positive integers and
FACS st Ypea® = Yoesnath

Consider the multiset S = {1,1,2,3,5}. Is (S) € PARTITION?

Yes, A ={1,2,3}, S\ A={1,5} both sum to 6



Show PARTITION € NP
We need to construct an NTM that decides PARTITION in polynomial time
N ="“On input (S),
@®Seta—0,b«0
® Foreachx € S
©® Nondeterministically pick ¢ € {0,1}
® Ifc=0, thenseta« a+ x; otherwiseset b <~ b+

@ If a = b, then accept; otherwise reject”

The elements where ¢ = 0 are in A and a is their sum; the elements where ¢ = 1 are in
S\ A and b is their sum



Show PARTITION € NP
We need to construct an NTM that decides PARTITION in polynomial time
N ="“On input (S),
@®Seta—0,b«0
® Foreachx € S
©® Nondeterministically pick ¢ € {0,1}
® Ifc=0, thenseta« a+ x; otherwiseset b <~ b+

@ If a = b, then accept; otherwise reject”

The elements where ¢ = 0 are in A and a is their sum; the elements where ¢ = 1 are in
S\ A and b is their sum

If (S) € PARTITION, then some branch of the computation will pick the correct A
such that @ = b and N accepts

If (S) € PARTITION, then every branch will select an A such that a # b so N rejects

Each step takes polynomial time and the loop happens | S| times so PARTITION € NP @



Verifiers

A verifier for a language A is a deterministic TM V such that
A ={w | V accepts {(w, c) for some string c}

A polynomial time verifier is a verifier that has running time polynomial in the length
of w but not ¢

c is called a certificate (or proof or witness)



Verifiers

A verifier for a language A is a deterministic TM V such that
A ={w | V accepts {(w, c) for some string c}

A polynomial time verifier is a verifier that has running time polynomial in the length
of w but not ¢

c is called a certificate (or proof or witness)

The idea behind verifiers is given an instance of a problem w and some extra
information about the solution of the problem ¢, V verifies w € A

Verifiers need to be designed such that if w ¢ A, then no certificate exists such that V'
accepts (w, ¢)



Polynomial time verifier for SAT

An instance of SAT is (the representation of) a boolean formula ¢
A certificate is an assignment of variables to truth values

Eg,.o=(@xA(yvzZ)A(zAyAZ)
One possible certificate c is the assignment xt =T, y = F, and z = F
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Polynomial time verifier for SAT

An instance of SAT is (the representation of) a boolean formula ¢
A certificate is an assignment of variables to truth values

Eg,.o=(@xA(yvzZ)A(zAyAZ)
One possible certificate c is the assignment xt =T, y = F, and z = F

We can construct a polynomial time verifier for SAT:
V ="“On input (¢, c),

@ Using the assignment ¢, evaluate ¢

@ If ¢ =T, then accept; otherwise reject”

If (¢) € SAT, then ¢ is satisfiable so there is some assignment ¢ that satisfies ¢ and V'
will accept (¢, ¢)

If (¢) ¢ SAT, then ¢ is unsatisfiable so no matter what ¢ is, it can't satisfy ¢, so V/

will reject (¢, c) @

V runs in time polynomial in [{(¢)]



Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?



Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?

The certificate is subset A such that > z= ) =z
€A TESNA

V = "On input (S, A),
@ If A¢ S, then reject

® Computea=)  c zxandb=> o4
© If a = b, then accept; otherwise reject”



Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?

The certificate is subset A such that > z= ) =z
€A TESNA

V = "On input (S, A),
@ If A¢ S, then reject

® Computea=)  c zxandb=> o4
© If a = b, then accept; otherwise reject”

If (S) € PARTITION, then there is some A € S that makes the equality hold so V' will
accept (S, A)

If (S) ¢ PARTITION, then no A € S will make the equality hold so V' will reject (S, A)

Computing the sums takes polynomial time so V' is a polytime verifier for PARTITION



A better characterization of NP

Theorem
Language A is in NP iff there is a polytime verifier for A.

This gives a better characterization of NP: NP is the class of languages for which a
polynomial time verifier exists

P The class of languages that can be decided in polynomial time

NP The class of languages that can be verified in polynomial time



Proof

We need to prove to things
@ — If A e NP, then there is a polytime verifier V for A
® << If there is a polytime verifier V for A, then A € NP
Start with = : If Ais in NP, then it is decided by an NTM N in polynomial time

For each w € A, N makes a sequence of nondeterministic choices when it is run on w.
(This sequence is the address tape in our NTM simulator)

Let ¢ be the sequence of choices N makes for one branch of computation



Proof continued

V ="On input (w,c),

@ Simulate N on w using each symbol of ¢ as the choice to take in each step, if
there aren’t enough symbols in ¢, then reject

® If N accepts, then accept; otherwise reject”

Since N takes polytime on each branch, V takes polytime on the branch selected by ¢

If w € A, then some sequence of choices ¢ will cause N to accept w and thus V will
accept (w, ¢)

If w ¢ A, then no matter what sequence of choices ¢ that N makes, N will reject and
thus V will reject (w, ¢) for all ¢



Proof continued
Now for <= : If V is a polynomial time verifier for A, then we need to construct a
polynomial time TM N such that L(N) = A.

V runs in time t(n) = a - n" for some a,k € N (because it's a polytime verifier)

N ="On input w,
@ Nondeterministically select a string ¢ of length at most a - n”

® Run V on (w,c). If V accepts, then accept; otherwise reject”

Picking a string of polynomial length takes polynomial time; running a polytime verifier
takes polynomial time so IV runs in nondeterministic polynomial time

If w € A, then there is some certificate ¢ of length at most a - n" [why?] such that V'
accepts (w, ¢). Thus some branch of N's computation will pick the correct ¢ such that
V' accepts so N will accept

If w ¢ A, then V rejects (w, c) for every ¢ so N will reject. Therefore, L(N)=A O



Example: Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HaMPATH = {(G, s,t) | G has a Hamiltonian path from s to t} € NP

What should we pick for the certificate?



Example: Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HaMPATH = {(G, s,t) | G has a Hamiltonian path from s to t} € NP

What should we pick for the certificate? The certificate should be the Hamiltonian
path ¢ = (ny,na,...,ny) itself!

V ="“Oninput (G, s,t,{(ny,na,...,n;)) where G = (V, E),
O IfV #{ny,ny,...,n.}t, s# nq, ort# ny, then reject
®Fori=1uptok—-1,
©® |If(n;,n;e1) ¢ FE, then reject
@ Otherwise, accept”

As usual, we need to show that V' accepts only when the certificate is a valid
Hamiltonian path and rejects everything else @

We also need to show that V' runs in time polynomial in (G, s, t)



Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set C € V such that for all
(a,b) € E, eithera€ Corbe C

E.g., G:
1—2

\\\/

C= {1, 4} is a vertex cover of G of size 2
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1—2
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C= {1, 4} is a vertex cover of G of size 2
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Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set C' € V such that for all
(a,b) € E, eithera€ Corbe C

E.g., G:
1—2

\\\/

C= {1, 4} is a vertex cover of G of size 2
VERTEXCOVER = {(G, k) | G has a vertex cover of size k} € NP
What is the certificate?

The certificate is a vertex cover of size k. The verifier checks that the certificate is a
valid vertex cover and has size k

g



Clique

A clique in an undirected graph G = (V, E) is a set C' € V such that every pair of
(distinct) vertices in C' is connected by an edge

E.g., G:
1—2

\\\/

C= {1, 2,4} is a clique of size 3
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Clique

A clique in an undirected graph G = (V, E) is a set C' € V such that every pair of
(distinct) vertices in C' is connected by an edge

E.g., G:
1—2

\\\/

C= {1, 2,4} is a clique of size 3
CLIQUE = {(G, k) | G has a clique of size k} € NP
What is the certificate?

The certificate is a clique of size k. The verifier checks that the certificate is a valid
clique of size k

g



