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Complexity

Computability What languages are decidable? (Equivalently, what decision problems
can we solve with a computer?)
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Complexity

Computability What languages are decidable? (Equivalently, what decision problems
can we solve with a computer?)

Complexity How long does it take to check if a string is in a decidable language?
(Equivalently, how long does it take to answer a decision question
about an instance of a problem?)
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Running time

The running time of a decider M is a function t ∶ N → N where t(n) is the maximum
number of steps M takes to accept/reject any string of length n

This is the worst-case time: If M can accept/reject every string of length 5 except
aabaa in 15 steps, but aabaa takes 4087 steps, then t(5) = 4087
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Big-O review

If f, g ∶ N → R
+

, we say f(n) = O(g(n)) to mean there exist N, c > 0 such that for
all n ≥ N , f(n) ≤ c ⋅ g(n)

Examples

Constant c = O(1) for any c ∈ R
+
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Logarithmic a logb n = O(logn)
Arithmetic O(n2) +O(n log

2
n ⋅ log logn) = O(n2)

Polynomial bound 2
O(log n)

or n
O(1)

Exponential bound 2
O(nδ)

for δ > 0
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Little-O review

If f, g ∶ N → R
+

, we say f(n) = o(g(n)) to mean

lim
n→∞

f(n)
g(n) = 0

Equivalently, there exist N, c > 0 such that for all n ≥ N , f(n) < c ⋅ g(n)
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Analyzing running time of deciders

It’s too much work to be precise (we don’t want to think about states)

For implementation-level descriptions of TMs, we can use big-O to describe the
running time

6 / 33



Example

Consider the TM M1 which decides A = {0n
1

n ∣ n ≥ 0}
M1 = “On input w,

1 Scan across the tape and reject if a 0 is found to the right of a 1

2 Repeat if both 0s and 1s remain on the tape

3 Scan across the tape, crossing off a single 0 and a single 1

4 If any 0 or 1 remain uncrossed off, then reject; otherwise accept”

How long does M1 take to accept/reject a string of length n?
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Example

Consider the TM M1 which decides A = {0n
1

n ∣ n ≥ 0}
M1 = “On input w,

1 Scan across the tape and reject if a 0 is found to the right of a 1

2 Repeat if both 0s and 1s remain on the tape

3 Scan across the tape, crossing off a single 0 and a single 1

4 If any 0 or 1 remain uncrossed off, then reject; otherwise accept”

How long does M1 take to accept/reject a string of length n?
Analyze each step

1 Scanning across the tape takes O(n)
2 Checking if 0 or 1 remain takes O(n)
3 Crossing off one 0 and one 1 takes O(n)
4 Performing the final check takes O(n)

Each time through the loop takes O(n) +O(n) = O(n) time and the loop happens at
most n/2 times

The total running time is O(n) + (n/2)O(n) +O(n) = O(n2)
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Time complexity class

Let t ∶ N → R
+

be a function. The time complexity class TIME(t(n)) is the set of
languages that are decidable by an O(t(n))-time TM

Example
A = {0n

1
n ∣ n ≥ 0} ∈ TIME(n2) because we gave a TM M1 that decides A in O(n2)

time
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Time complexity class

Let t ∶ N → R
+

be a function. The time complexity class TIME(t(n)) is the set of
languages that are decidable by an O(t(n))-time TM

Example
A = {0n

1
n ∣ n ≥ 0} ∈ TIME(n2) because we gave a TM M1 that decides A in O(n2)

time

Sipser gives a more clever TM M2 that decides A in time O(n logn) by crossing off
every other 0 and every other 1 each time through the loop

Thus, A ∈ TIME(n logn) (this is the best we can do on a single-tape TM)
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What about a 2-TM?

With a 2-TM, we can decide A in linear (O(n)) time
M3 = “On input w,

1 Scan right and reject if any 0 follows a 1

2 Return the beginning of the first tape

3 Scan right to the first 1, copying the 0s to the second tape

4 Scan right on the first tape and left on the second, crossing off a 0 for each 1, if
there aren’t enough 0s, then reject

5 If more 0s remain, then reject; otherwise accept”

Steps 1 and 2 each take O(n); together, steps 3, 4, and 5 constitute a single pass over
the input so O(n)

Total running time: O(n) +O(n) +O(n) = O(n)
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Time complexity of a language depends on our model of computation

M1 decides A in time O(n2)

M2 decides A in time O(n logn)

M3 decides A in time O(n) but uses a 2-TM
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Relationships between models of computation

Recall from computability that the following are equivalent

• Single tape TM

• k-tape TM

• Nondeterministic TM

The situation for complexity is different
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Simulating a k-TM

Theorem
Let t ∶ N → R

+

where t(n) ≥ n. Every t(n)-time k-TM has an equivalent

O(t2(n))-time single-tape TM

Proof
Recall that we simulated a k-TM M with a single-tape TM S by writing the k tapes
separated with # and dots representing the heads; e.g.,

a b b a a b

M :

a b a b a b b

a b b

# a b
•

b a a b # a b a b a
•

b b #
•

a b b #

first tape second tape third tape

S:
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Proof continued

If M runs in time t(n), then it uses at most t(n) tape cells on each tape so S will use
at most k ⋅ t(n) + k + 1 = O(t(n)) cells

Simulating one step of M required scanning across the tape twice and performing up
to k shifts [why?]

Thus, each step of M takes O(t(n)) time for S to simulate

Since there are t(n) steps and each takes O(t(n)) time, the running time for S is
t(n) ⋅O(t(n)) = O(t2(n))
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Simulating a k-TM with a 2-TM

Just for your own edification:

Theorem
Every k tape TM that runs in time t(n) for t(n) ≥ n can be simulated by a 2-tape TM

in time O(t(n) log t(n))
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Running time for NTMs

Let N be a nondeterministic TM that is a decider. The running time of N is a
function t ∶ N → N where t(n) is the maximum number of steps that N uses on any

branch of computation on any input of length n

c0

c1

c11

c111

reject

reject

reject

c2

c21

c211

accept

accept c213

reject

c22

reject

t(n)

Nondeterministic
c0

c1

c2

c3

accept

t(n)

Deterministic
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Simulating an NTM

Theorem
Every t(n)-time NTM where t(n) ≥ n has an equivalent deterministic 2

O(t(n))
-time

TM
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-time

TM

Proof idea
Our simulation of an NTM used a 3-TM and it performed a breadth first search of the
configuration tree

The height of the tree is t(n) and if the maximum number of choices at each step is b,

then the tree has O(bt(n)) total nodes
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Every t(n)-time NTM where t(n) ≥ n has an equivalent deterministic 2

O(t(n))
-time

TM

Proof idea
Our simulation of an NTM used a 3-TM and it performed a breadth first search of the
configuration tree

The height of the tree is t(n) and if the maximum number of choices at each step is b,

then the tree has O(bt(n)) total nodes

For each node, we simulate from the root to the node which takes O(t(n)) time

The running time of the 3-TM is O(t(n)) ⋅O(bt(n)) = 2
O(t(n))

We can simulate the 3-TM with a TM in time (2
O(t(n)))2

= 2
O(t(n))
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Polynomial time

Note that the time to decide a language with a TM takes only a polynomial (a square)
of the time it takes to decide with a k-TM

All reasonable deterministic models of computation are polynomially equivalent; that
is, you can simulate any of them with any other with only a polynomial slow down

As we saw, nondeterminism seems fundamentally different

From this point, we’re not going to be concerned with polynomial differences in time;

e.g., the difference between O(n logn) and O(n105) won’t matter: Both are n
O(1)
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The class P

P is the class of languages that are decidable in polynomial time on a deterministic
TM,

P =

∞

⋃
k=0

TIME(nk)

P is a useful class because membership in P doesn’t depend on (reasonable)
deterministic models of computation

A problem that can be solved in polynomial time on a computer can be solved in
polynomial time on a TM (even though the polynomial for one may be much larger
than for the other)
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The class EXPTIME

EXPTIME is the class of languages that are decidable in exponential time on a
deterministic TM

EXPTIME =

∞

⋃
k=0

TIME(2n
k

)

Note that EXPTIME is the same for any polynomially-equivalent models of
computation

If language A takes time 2
O(nk)

under one model, then it’ll take

(2O(nk))c
= 2

c⋅O(nk)
= 2

O(nk)
time under a polynomially-equivalent model
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Tractable and intractable problems

We say that problems that can be solved in polynomial time are tractable: We can
solve them with computers

We say that problems that take exponential time (or longer) are intractable: We can
only solve very small instances of them with computers

P = tractable
EXPTIME = intractable

Lots of interesting problems are in P!
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Graphs

Recall: A graph G is a pair G = (V,E) where V is the set of vertices and E ⊆ V × V

is the set of edges

• For an undirected graph edge (a, b) = (b, a) (sometimes we write {a, b})
• For a directed graph edge (a, b) is different from edge (b, a) (unless a = b)

In an algorithms class (e.g., CS 401), we would care about run times of algorithms in
terms of m = ∣V ∣ and n = ∣E∣

But since n ≤ m
2

and we don’t care about polynomial differences, we’ll talk about
graph algorithm run times in terms of m alone

That is, we’re going to phrase problems involving graphs as languages (of course) and
we’re going to ask questions like is the language in P?
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PATH ∈ P

Define PATH = {⟨G, s, t⟩ ∣ G is a directed graph and there’s a path from s to t}.
Then PATH ∈ P
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M = “On input ⟨G, s, t⟩ where G = (V,E) and s, t ∈ V ,

1 Mark s

2 Repeat until no new nodes are marked,

3 For each (x, y) ∈ E, if x is marked and y is not, mark y

4 If t is marked, then accept; otherwise reject”
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Define PATH = {⟨G, s, t⟩ ∣ G is a directed graph and there’s a path from s to t}.
Then PATH ∈ P

We can give a TM M to decide PATH

M = “On input ⟨G, s, t⟩ where G = (V,E) and s, t ∈ V ,

1 Mark s

2 Repeat until no new nodes are marked,

3 For each (x, y) ∈ E, if x is marked and y is not, mark y

4 If t is marked, then accept; otherwise reject”

The algorithm marks all nodes reachable from node s and accepts iff t is marked so
L(M) = PATH.

The loop in step 2 happens at most m = ∣V ∣ times and there are at most
n = ∣E∣ ≤ m2

edges to check each time. Therefore, the running time is polynomial in
m and thus polynomial in the size of the input
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What about on a computer?

Implementing this algorithm on a computer would take O(mn) time since it is looping
over each of the n edges at most m times

There’s a more clever algorithm that takes time O(m + n) but since both of these are
polynomials, we don’t need to be any more clever
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Boolean formulae

A boolean formula is an expression containing boolean variables and operations (∧, ∨,
and ¬)

Example: φ = (¬x ∧ y) ∨ (x ∧ ¬z)

As a shorthand, we write x for ¬x so φ = (x ∧ y) ∨ (x ∧ z)
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Boolean formulae

A boolean formula is an expression containing boolean variables and operations (∧, ∨,
and ¬)

Example: φ = (¬x ∧ y) ∨ (x ∧ ¬z)

As a shorthand, we write x for ¬x so φ = (x ∧ y) ∨ (x ∧ z)

A boolean formula is in conjunctive normal form (CNF) if it consists of conjunctions
(ANDs) of disjunctions (ORs)

• (a ∨ b ∨ c) ∧ (d ∨ e ∨ f)
• (a ∨ b) ∧ c
• a ∨ b [Why is this in CNF?]

• a
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Terminology

Literal A variable or its negation: x, y, z are all literals
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φ = (a ∨ b)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
clause

∧(a ∨ c) ∧ (b ∨ c)

Satisfiable A formula is satisfiable is there is an assignment of truth values (T/F or
1/0) to the variables that makes the whole formula true
φ is satisfiable by setting a = T , b = F , and c = T

Unsatisfiable A formula is unsatisfiable if every assignment of truth values to the
variables makes the whole formula false
ψ = (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) is unsatisfiable because every
assignment makes one of the four clauses false
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2-SAT

Define 2-SAT = {⟨φ⟩ ∣ φ is a satisfiable boolean formula in 2-CNF}

26 / 33



2-SAT

Define 2-SAT = {⟨φ⟩ ∣ φ is a satisfiable boolean formula in 2-CNF}

2-SAT is decidable
M1 = “On input ⟨φ⟩,

1 For each assignment of truth values to variables in φ,

2 If the assignment satisfies φ, then accept

3 Otherwise, reject”

Clearly, M1 decides 2-SAT. What is its run time?
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2-SAT

Define 2-SAT = {⟨φ⟩ ∣ φ is a satisfiable boolean formula in 2-CNF}

2-SAT is decidable
M1 = “On input ⟨φ⟩,

1 For each assignment of truth values to variables in φ,

2 If the assignment satisfies φ, then accept

3 Otherwise, reject”

Clearly, M1 decides 2-SAT. What is its run time?

If there are n variables, then there are 2
n

combinations of assignments to try so
2-SAT ∈ EXPTIME. Can we do better?
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Implications

Recall that the logical implication a→ b is equivalent to a ∨ b

Thus x ∨ y is equivalent to x→ y and y → x
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Implications

Recall that the logical implication a→ b is equivalent to a ∨ b

Thus x ∨ y is equivalent to x→ y and y → x

From a formula in 2-CNF, we can produce a set of implications which are all
simultaneously satisfiable if the formula is

φ = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)

a→ b b→ a

a→ c c→ a

b→ c c→ b

ψ = (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)

a→ b b→ a

a→ b b→ a

a→ b b→ a

a→ b b→ a

Recall that implications are transitive: If x→ y and y → z, then x→ z
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Satisfiability of implications

If there is a chain of implications x→ a→⋯→ x, then x = F

If there is a chain of implications x→ b→⋯→ x, then x = T

If both chains of implications exist, then the set of implications is not satisfiable
(because a literal cannot be both true and false)

Thus, if we start with a formula in 2-CNF and write out the set of equivalent
implications and find x→ x and x→ x for some variable x, then the formula is not
satisfiable
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Satisfiability of implications

If there is a chain of implications x→ a→⋯→ x, then x = F

If there is a chain of implications x→ b→⋯→ x, then x = T

If both chains of implications exist, then the set of implications is not satisfiable
(because a literal cannot be both true and false)

Thus, if we start with a formula in 2-CNF and write out the set of equivalent
implications and find x→ x and x→ x for some variable x, then the formula is not
satisfiable

In fact, this condition is necessary, not merely sufficient for a formula to be
unsatisfiable (harder to prove (Krom 1967))

That is, a formula is unsatisfiable iff x→ x and x→ x for some variable x
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Turning a formula into a directed graph

If the formula has m clauses and n variables, then we can construct the formula’s
implication graph which has 2n vertices and 2m edges

Let the vertices of the graph be each variable and its negation (i.e., x and x are
vertices for each variable x)

Let (x, y) be a directed edge in the graph for each implication x→ y

There’s a path from x to y in the graph iff there is a chain of implications
x→ a→⋯→ y

φ = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c):
a

b

c

a

b

c

ψ = (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b):
a

b

a

b

a→ b→ a a→ b→ a
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2-SAT ∈ P

Now we can use our polynomial-time decider for PATH to decide 2-SAT in polynomial
time

Let R decide PATH and construct D to decide 2-SAT

D = “On input ⟨φ⟩,
1 Construct the implication graph G for φ
2 For each variable x in φ,
3 Run R on ⟨G, x, x⟩ and ⟨G, x, x⟩; if R accepts both, then reject

4 Otherwise accept”
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Now we can use our polynomial-time decider for PATH to decide 2-SAT in polynomial
time

Let R decide PATH and construct D to decide 2-SAT

D = “On input ⟨φ⟩,
1 Construct the implication graph G for φ
2 For each variable x in φ,
3 Run R on ⟨G, x, x⟩ and ⟨G, x, x⟩; if R accepts both, then reject

4 Otherwise accept”

⟨φ⟩ ∉ 2-SAT iff φ is unsatisfiable iff there is some variable x such that there is a path
from x to x and a path from x to x in the implication graph iff D rejects

Since PATH ∈ P, R runs in time polynomial in its input ⟨G, s, t⟩ which has size
polynomial in the size of ⟨φ⟩

Constructing G takes polynomial time in the size of ⟨φ⟩ and R is run a polynomial
number of times (twice per variable) so D runs in polynomial time. Therefore,
2-SAT ∈ P
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Why is constructing the graph polynomial time?

Remember, if φ has m clauses and n variables, then G has 2n vertices and 2m edges

For example, we could use the adjacency matrix representation which would be a
2n × 2n matrix
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Recap

PATH ∈ P because we were able to give a polynomial time decider for it

By naïvely enumerating all 2
n

possible truth values, we showed 2-SAT ∈ EXPTIME

By being more clever and constructing a graph corresponding to formulae in 2-CNF,
we showed 2-SAT ∈ P

32 / 33



Can we always be more clever?

Sadly, no. P ⊊ EXPTIME

That is, there are problems (equivalently languages) that require exponential time to
decide

Here’s one: A = {⟨M,w, 1
k⟩ ∣ M is a TM that accepts w in at most 2

k
steps}

A ∈ EXPTIME: Simulate running M on w for 2
k

steps takes exponential time

A ∉ P: Harder to prove, but true
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