
CS 301

Lecture 20 – Reductions

Stephen Checkoway

April 9, 2018

1 / 17



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

2 / 17



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

Example:
A: Passing CS 301
B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 301 reduces to the
problem of getting good grades) because

• If you get good grades, then you will pass

• If you fail, then you did not get good grades (contrapositive)

2 / 17



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

Example:
A: Passing CS 301
B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 301 reduces to the
problem of getting good grades) because

• If you get good grades, then you will pass

• If you fail, then you did not get good grades (contrapositive)

But note:

• Passing CS 301 doesn’t say anything about your grade

• Getting bad grades doesn’t mean you’ll fail

2 / 17



Reduction of languages

We say language A reduces to language B (written A ≤ B) to mean
“If B is decidable, then A is decidable”

We use a reduction A ≤ B in two different ways

• Proving that language A is decidable. “Good-news reduction.” If B is decidable,
then A is decidable

• Proving that language B is undecidable. “Bad-news reduction.” If A is
undecidable, then B is undecidable

3 / 17



“Good-news reduction”

To prove that language A is decidable, we need to build a TM D that decides it

If B is a decidable language, we can let R be a TM that decides B and use it as a
subroutine in D

D = “On input ,

1 Using the input, construct some input for R

2 Run R on that input (it’s possible we need to use R multiple times)

3 Make some decision to accept or reject based on the outcome of R”

Now we just need to prove that L(D) = A and that D is a decider

In this way, we have reduced A to B (i.e., A ≤ B)

4 / 17



“Bad-news reduction”

To prove that language B is undecidable, we need to pick an undecidable language A

and show that A ≤ B

We start by assuming that B is decidable

Just as with the good-news reduction, we let R be a decider for B and use it as
subroutine to construct a decider for A

D = “On input ,

1 Using the input, construct some input for R

2 Run R on that input (it’s possible we need to use R multiple times)

3 Make some decision to accept or reject based on the outcome of R”

Now we just need to prove that L(D) = A and that D is a decider

Since A is undecidable and we were able to construct a decider for it, our assumption
that B is decidable must be wrong

5 / 17



Good-news reductions we’ve already seen

• ANFA ≤ ADFA

• AREX ≤ ANFA

• EQDFA ≤ EDFA

• Every regular language A ≤ ADFA

• Every context-free language A ≤ ACFG

6 / 17



Bad-news reductions we’ve already seen

• Diag ≤ ATM

• ATM ≤ HaltTM

• ATM ≤ ETM

7 / 17



Equality of TMs

Let’s prove that

EQTM = {⟨M1, M2⟩ ∣ M1, M2 are TMs and L(M1) = L(M2)}

is undecidable

Let’s perform a bad-news reduction from ETM

Proof.
Assume that EQTM is decided by some TM R and build a TM to decide ETM:
D = “On input ⟨M⟩,

8 / 17



Equality of TMs

Let’s prove that

EQTM = {⟨M1, M2⟩ ∣ M1, M2 are TMs and L(M1) = L(M2)}

is undecidable

Let’s perform a bad-news reduction from ETM

Proof.
Assume that EQTM is decided by some TM R and build a TM to decide ETM:
D = “On input ⟨M⟩,

1 Construct TM M
′
such that L(M

′
) = ∅

8 / 17



Equality of TMs

Let’s prove that

EQTM = {⟨M1, M2⟩ ∣ M1, M2 are TMs and L(M1) = L(M2)}

is undecidable

Let’s perform a bad-news reduction from ETM

Proof.
Assume that EQTM is decided by some TM R and build a TM to decide ETM:
D = “On input ⟨M⟩,

1 Construct TM M
′
such that L(M

′
) = ∅

2 Run R on ⟨M, M
′
⟩

8 / 17



Equality of TMs

Let’s prove that

EQTM = {⟨M1, M2⟩ ∣ M1, M2 are TMs and L(M1) = L(M2)}

is undecidable

Let’s perform a bad-news reduction from ETM

Proof.
Assume that EQTM is decided by some TM R and build a TM to decide ETM:
D = “On input ⟨M⟩,

1 Construct TM M
′
such that L(M

′
) = ∅

2 Run R on ⟨M, M
′
⟩

3 If R accepts, then accept; otherwise reject”

Since R is a decider, D is a decider
Clearly D accepts ⟨M⟩ iff R accepts ⟨M, M

′
⟩ iff L(M) = ∅ so L(D) = ETM

8 / 17



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A ≤ B

How do we do this? Try to prove it

9 / 17



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A ≤ B

How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true

9 / 17



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A ≤ B

How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true

Hint 2: The proposition P ⟹ true is true

9 / 17



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A ≤ B

How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true

Hint 2: The proposition P ⟹ true is true

Proof.
Since A is decidable, then the implication “B is decidable implies A is decidable” is
always true.

More general statement: If A is decidable and B is arbitrary, then A ≤ B. Same proof.

9 / 17



Checking if the language of a TM is regular

Theorem
RegularTM = {⟨M⟩ ∣ M is a TM and L(M) is regular} is undecidable

To prove this, we want to perform a bad-news reduction from some undecidable
language

A useful technique for languages involving properties of languages of TMs (here the
property is that the language is regular) involves reducing from ATM

Given a TM M and a string w, we want to construct a new TM M
′
such that the

language of M
′
is regular if w ∈ L(M) and is nonregular if w ∉ L(M)

10 / 17



Proof

Let’s construct a TM whose language is {0, 1}
∗

if w ∈ L(M) and is {0
n
1

n
∣ n ≥ 0} if

w ∉ L(M)

Proof.
Assume that RegularTM is decided by some TM R. Build D to decide ATM

D = “On input ⟨M, w⟩,

1 Construct a new TM
M

′
= “On input x,

1 If x = 0
n

1
n

for some n, accept

2 Otherwise, run M on w and if M accepts, accept; otherwise reject”

2 Run R on ⟨M
′
⟩ and if R accepts, then accept; otherwise reject”

11 / 17



Proof

Let’s construct a TM whose language is {0, 1}
∗

if w ∈ L(M) and is {0
n
1

n
∣ n ≥ 0} if

w ∉ L(M)

Proof.
Assume that RegularTM is decided by some TM R. Build D to decide ATM

D = “On input ⟨M, w⟩,

1 Construct a new TM
M

′
= “On input x,

1 If x = 0
n

1
n

for some n, accept

2 Otherwise, run M on w and if M accepts, accept; otherwise reject”

2 Run R on ⟨M
′
⟩ and if R accepts, then accept; otherwise reject”

We need to show that D is a decider and we need to show that L(D) = ATM

Why is D a decider?

11 / 17



Proof

Let’s construct a TM whose language is {0, 1}
∗

if w ∈ L(M) and is {0
n
1

n
∣ n ≥ 0} if

w ∉ L(M)

Proof.
Assume that RegularTM is decided by some TM R. Build D to decide ATM

D = “On input ⟨M, w⟩,

1 Construct a new TM
M

′
= “On input x,

1 If x = 0
n

1
n

for some n, accept

2 Otherwise, run M on w and if M accepts, accept; otherwise reject”

2 Run R on ⟨M
′
⟩ and if R accepts, then accept; otherwise reject”

We need to show that D is a decider and we need to show that L(D) = ATM

Why is D a decider? Note that we never run M
′
. All D does is construct a new TM

and then run a decider on its representation

11 / 17



Proof

Let’s construct a TM whose language is {0, 1}
∗

if w ∈ L(M) and is {0
n
1

n
∣ n ≥ 0} if

w ∉ L(M)

Proof.
Assume that RegularTM is decided by some TM R. Build D to decide ATM

D = “On input ⟨M, w⟩,

1 Construct a new TM
M

′
= “On input x,

1 If x = 0
n

1
n

for some n, accept

2 Otherwise, run M on w and if M accepts, accept; otherwise reject”

2 Run R on ⟨M
′
⟩ and if R accepts, then accept; otherwise reject”

We need to show that D is a decider and we need to show that L(D) = ATM

Why is D a decider? Note that we never run M
′
. All D does is construct a new TM

and then run a decider on its representation

If w ∈ L(M), then L(M
′
) = {0, 1}

∗
which is regular so R and D accept. If

w ∉ L(M), then L(M
′
) is not regular so R and D reject. Thus L(D) = ATM

11 / 17



ALLCFG is undecidable

Theorem
ALLCFG = {⟨G⟩ ∣ G is a CFG and L(G) = Σ

∗
} is undecidable.

Proof idea.
We want to reduce from ATM

Given a TM M and a string w, we want to construct a CFG G such that if
w ∈ L(M), then G fails to generate some string and if w ∉ L(M), then L(G) = Σ

∗

The string that G should fail to generate is an accepting computation of M on w

Recall, a configuration C of a TM is a string C = uqv where u ∈ Γ
∗

is the tape to the
left of the tape head, q ∈ Q is the current state, and v ∈ Γ

∗
is the nonblank portion of

the tape below and to the right of the tape head

12 / 17



Proof idea continued

An accepting computation is a sequence of configurations C1, C2, . . . , Cn such that

1 C1 = q0w is the initial configuration (where w is the input)

2 Ci follows from Ci−1 according to the TM’s transition; i.e., Ci is the same as
Ci−1 except for the symbols right around the states

3 Cn = uqacceptv for some u, v ∈ Γ
∗

We want to create a CFG G that generates all strings except for the string
h = #C1#C

R

2 #⋯#Cn# where C1, C2, . . . , Cn is an accepting computation of M on w

For technical reasons, we need every other Ci to be reversed

h = # →
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

C1

# ←
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

C
R

2

# →
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

C3

# ←
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

C
R

4

#⋯# →
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

C
n

#

If w ∉ L(M), then no such accepting computation exists and L(G) = Σ
∗

If w ∈ L(M), then L(G) = Σ
∗
∖ {h}

13 / 17



Proof idea continued

Rather than construct a CFG directly, we can construct a PDA P and then convert it
to a CFG G

P should nondeterministically (i.e., using ε-transitions) check that one of the three
conditions does not hold:

1 If C1 is not the initial configuration (which is hard coded into P ), accept;
otherwise reject

2 If C2 does not follow from Ci−1, accept; otherwise reject

3 If Cn is not an accepting configuration, accept; otherwise reject

Condition 1 is easy to check: this branch of the PDA just checks that the input does
not start with #q0w#

Condition 3 is likewise easy: this branch of the PDA just checks that the state that
appears before the final # is not qaccept

14 / 17



Proof idea continued

Condition 2 is the hard one. P will nondeterministically pick a configuration Ci to
check if it follows from Ci−1

P will push Ci−1 onto its stack (or C
R

i−1, depending on i being odd or even)

Then P will match Ci (or C
R

i ) by popping the stack. The symbols around the states
and the states themselves need to change according to M ’s transition function (this is
the slightly tricky part)

This branch rejects if Ci properly follows from Ci−1 and accepts otherwise

15 / 17



Proof

Proof.
Assume ALLCFG is decided by TM R and construct TM D to decide ATM:
D = “On input ⟨M, w⟩,

1 Construct PDA P based on M and w

2 Convert P to an equivalent CFG G

3 Run R on ⟨G⟩ and if R rejects, accept; otherwise reject”

None of constructing the PDA, converting to a CFG, and running a decider loop so D

is a decider

If w ∈ L(M), then P rejects the string corresponding to the accepting computation so
L(G) ≠ Σ

∗
. Therefore, R rejects and D accepts

If w ∉ L(M), then P accepts every string so L(G) = Σ
∗

and R accepts and D rejects

Since ATM is undecidable and D decides it, our assumption must be wrong and
ALLCFG is undecidable

16 / 17



EQCFG is undecidable

Homework: Prove that EQCFG is undecidable

Reduce from ALLCFG

17 / 17


