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Review of “pumpable” languages

Recall we call a language L pumpable with pumping length p if for all w ∈ L with
∣w∣ ≥ p, there exist strings x, y, z ∈ Σ

∗
with w = xyz such that

1 for all i ≥ 0, xy
i
z ∈ L;

2 ∣y∣ > 0; and

3 ∣xy∣ ≤ p

Then we proved that regular languages are pumpable

This let us prove a language was not regular by showing it isn’t pumpable
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CF-pumpability

A language L is CF-pumpable with pumping length p if for all w ∈ L with ∣w∣ ≥ p,
there exist strings u, v, x, y, z ∈ Σ

∗
such that

1 for all i ≥ 0, uv
i
xy

i
z ∈ L;

2 ∣vy∣ > 0; and

3 ∣vxy∣ ≤ p

Rather than dividing the string into 3 pieces, we’re dividing it into 5

Two of the pieces (v and y) are pumped together

Condition 2 tells us that at least one of v or y must not be ε
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Example pumpable language

The language A = {w#w
R

∣ w ∈ {a, b}
∗
} is CF-pumpable with pumping length p = 3
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R
∈ L

2 ∣vy∣ = ∣cc∣ = 2 > 0

3 ∣vxy∣ = ∣c#c∣ = 3 ≤ p
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Parse trees

CFG for A = {w#w
R

∣ w ∈ {a, b}
∗
}: S → aSa ∣ bSb ∣ #

Consider a parse tree for w = aab#baa

S

a S

a S

b S

#

b

a

a

i = 1:

u = aa, v = b, x = #, y = b, z = aa

• Pumping down replaces the yellow trapezoid with the violet trapezoid

• Pumping up replaces the violet trapezoid with the yellow trapezoid
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CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)

Context-free languages are CF-pumpable

Proof idea.
Consider a CFG G = (V, Σ, R, S) in CNF

Set p large enough that any string of length at least p repeats some variable in its

derivation (it turns out p = 2
∣V ∣

+ 1 works)

This repeated variable, call it R, will play
the same role as the repeated state did in
proving that regular languages are pumpable

Note that this means R
∗

⇒ vxy and R
∗

⇒ x

S

R

R

u v x y z
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Condition 1: ∀i ≥ 0. uv
i
xy

i
z ∈ L

S

R

R

i = 1:

u v x y z

S

R

i = 0:

u

x

z

S

R

R

R

i = 2:

u v

v x y

y z

• Pumping down replaces the yellow triangle with the violet triangle

• Pumping up replaces the violet triangle with the yellow triangle

• We can pump up arbitrarily by repeating this process

Thus we’ve satisfied the first condition:

1 for all i ≥ 0, uv
i
xy

i
z ∈ L
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Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at

R
∗

⇒ vRy

S

R

R

u v x y z

8 / 15



Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at

R
∗

⇒ vRy

Since G is in CNF, we must have R ⇒ AB
∗

⇒ vRy for
some variables A and B

Two cases:

S

R

R

u v x y z

8 / 15



Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at

R
∗

⇒ vRy

Since G is in CNF, we must have R ⇒ AB
∗

⇒ vRy for
some variables A and B

Two cases:

• A
∗

⇒ vRs and B
∗

⇒ t where st = y

t (and thus y) cannot be ε because G is in CNF

S

R

R

u v x y z

8 / 15



Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at

R
∗

⇒ vRy

Since G is in CNF, we must have R ⇒ AB
∗

⇒ vRy for
some variables A and B

Two cases:

• A
∗

⇒ vRs and B
∗

⇒ t where st = y

t (and thus y) cannot be ε because G is in CNF

• A
∗

⇒ s and B
∗

⇒ tRy where st = v

s (and thus v) cannot be ε because G is in CNF

S

R

R

u v x y z

8 / 15



Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at

R
∗

⇒ vRy

Since G is in CNF, we must have R ⇒ AB
∗

⇒ vRy for
some variables A and B

Two cases:
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∗
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t (and thus y) cannot be ε because G is in CNF

• A
∗

⇒ s and B
∗

⇒ tRy where st = v

s (and thus v) cannot be ε because G is in CNF

In either case, we’ve satisfied the second condition:

2 ∣vy∣ > 0

S

R

R
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For strings with length at least p = 2
∣V ∣

+ 1 we said there
had to be a repeated variable

Looking at all subtrees of height at most ∣V ∣ + 1, there
must be a repeated variable (pigeonhole principle), so pick
one of those for R that derives vxy

Now since R is at distance at most ∣V ∣+1 from the leaves,

we must have ∣vxy∣ ≤ 2
∣V ∣

≤ p

(A perfect binary tree of height h has 2
h

leaves, but the
last level of interior nodes in a parse tree for a grammar in
CNF have a single child each)

Therefore, we’ve satisfied the final condition:

3 ∣vxy∣ ≤ p

S

R

R

u v x y z
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Showing that a language is not context-free

We can prove that a language is not context-free by showing that it violates the
pumping lemma for context-free languages

Steps:

1 Assume the language, L, is context-free with some unspecified pumping length p

2 Pick string w ∈ L such that ∣w∣ ≥ p

3 Consider every division of w into uvxyz = w such that ∣vy∣ > 0, and ∣vxy∣ ≤ p

4 For each possible division, show that for some i, uv
i
xy

i
z ∉ L
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Example

B = {a
n
b

n
c

n
∣ n ≥ 0} is not context-free
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n
; or

v = c
m

, y = c
n
). Then uxz doesn’t have the same number of as, bs, and cs, so

uv
0
xy

0
z ∉ B

• v and y contain different symbols, but only a single type each (v = a
m

, y = b
n
;

v = a
m

, y = c
n
; or v = b

m
, y = c

n
). Again, uxz doesn’t have the same number

of as, bs, and cs so uv
0
xy

0
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Using closure properties

Using the pumping lemma for CFLs is a pain

We can prove that

C = {w ∣ w ∈ {a, b, c}
∗

and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?
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C = {w ∣ w ∈ {a, b, c}
∗

and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?

Intersect with a
∗
b
∗
c
∗
:

C ∩ a
∗
b
∗
c
∗
= B

Since context-free languages are closed under intersection with a regular language, if C

were context-free, then B would be context-free.

This is a contradiction so C is not context-free.
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Another example

D = {a
n
ba

2n
ba

3n
∣ n ≥ 0} is not context-free
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• If v or y contains b, then pumping down gives a string with too few bs

• If x doesn’t contain a b, then vxy = a
m

is in the first, second, or third run of as,
for some m. In any case, pumping down gives a string with as in the wrong ratio

• If x contains a b, then either v = a
m

is in the first run of as and y = a
n

is in the
second, or v is in the second and y is in the third. In either case, pumping down
gives a string with as in the wrong ratio
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Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
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• Try to select w that will lead to as few cases as possible

• Use the fact that ∣vxy∣ ≤ p to constrain the cases; e.g., if you need some as
followed by some bs followed by some cs, try to have at least p of each so that
vxy cannot come from all three

• Try to cover as many similar cases at once as possible; e.g., if several cases are
analogous, try to address them in one argument
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Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?
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Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?
No!

What are two context-free languages whose intersection is not context-free?

E = {a
m

b
m

c
n
∣ m, n ≥ 0}

F = {a
m

b
n
c

n
∣ m, n ≥ 0}

E ∩ F = {a
n
b

n
c

n
∣ n ≥ 0}
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