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CFLs and PDAs

Theorem
Every context-free language can be recognized by some PDA.

Proof idea.

@ Use the PDA's stack to perform a left-most derivation of a word in the language
® Match the PDA's input symbols against the stack, popping each one

© Accept if stack is empty when there's no more input

2/18



What we'd like to do

Consider the language A = {w | w € {a,b}" and w is not a palindrome}
What CFG generates that language?
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What we'd like to do

Consider the language A = {w | w € {a,b}" and w is not a palindrome}
What CFG generates that language?

S = aSa | bSb | aTb | bTa
T —aT | 0T | e

A left-most derivation of the string abaaa is
S = aSa = abTaa = abaTaa = abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
@ The first step in the derivation S = aSa requires popping one symbol and

pushing three @

® We can only replace symbols at the top of the stack
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Pushing multiple symbols

e, S —alb
We would like to write a transition like

but d:Qx X, xI'y » P(Q xT.) doesn't allow that
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Pushing multiple symbols

e, S —alb
We would like to write a transition like

but d:Qx X, xI'y » P(Q xT.) doesn't allow that
e S>b ee-oT €,e—>a

Instead, use multiple transitions @/NO/NO/N@

Note that the symbols are pushed on in reverse order
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We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

® |f the top of the stack is a terminal, match it to the next input symbol
t,t = ¢
foreacht e X

® |f the top of the stack is a variable, replace it with the RHS of a corresponding rule
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We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,
® |f the top of the stack is a terminal, match it to the next input symbol

t,t = ¢
foreacht € X

® |f the top of the stack is a variable, replace it with the RHS of a corresponding rule

In fact, we only need four main states plus
any additional states necessary to push mul-
tiple symbols

The qoop state is where all the real work
happens

—(@)

g,e—>$

®

g, e— S
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Example

|

OO ®

S — aSa|bSb|alb | bTa

T —al |bT |e c e

@ For each t € X, add the transition
t,t = € from gioop tO Gioop

g, 8 — aSa
@® For each rule A — ujug---u, for g, — £,S - bSb
u; € V. UX, add n — 1 new states (if e, 8 — aTb
n > 1) and transitions to pop A and :’: : i Uews £,S - bTa
push wuq,usg, ..., U, on in reverse order ’ e, T — aT
e$-oc¢ e, T = bl
g,T —¢

[The rules on the right need 10 extra states @
to make this a proper PDA]
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Running the PDA on some input

Consider running the PDA on the input

abaaa. The stack is shown on the right after _’
each step
@ push $; $ se—$
@ €, S - aSa
g,e— 8 £,5 = bSb
aa—e e, S - alb
b:b S €,S - bla
e, T — al
e$-oc¢ e, T = bl
g,T —¢
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Running the PDA on some input

Consider running the PDA on the input

abaaa. The stack is shown on the right after _’

each step
@ push §; $ 8E= ?
® push S; S$ e
© pop S, push aSa; aSa$ ? c.S > aSa
O read and pop a; Sa$ ee— S £,5 - bSb
® pop S, push bTa; bTaa$ a8 e e, S - alb
@ read and pop b; Taa$ b:b Se €5 - bTla
@ pop T, push aT; aTaa$ &I —al
® read and pop a; Taa$ &3 Z; : :T
O pop T, push ¢; aa$
i read and pop a; a$
® read and pop a; $ @
® pop $ and accept; €
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Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG G = (V. X, R, S).
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Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG G = (V. X, R, S).

Construct the PDA M = (Q,%,T',6, qo, {qq}) with states Q = {qo, q1, Gioop> G} U E
where FE are the extra states we need for each rule and T' = V U X U {$}.

Start with then transitions
g,e = $ from ¢ to q,
g,e = S from ¢; to gioep, and
£,$ = & from gioop t0 ¢4

For each t € ¥, add the transition ¢,z — € from gjo0p t0 Gioop-

For each rule A — u add the states and transitions necessary to pop A and push v in
reverse order from gjoop t0 Gioop-

g
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Proof continued

Consider running M on input w = wywsy-+-w,, for w; € 3.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gio0p, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read Stack

9 push $ e $
£,6 >

O ®

€, 8 - aSa
€, €,5 = bSb
e, S —alb

a,a—e
bb— ¢ Qioop €,S - bla
e, T'"— aTl
€,$—’€ EvT_)bT

e,T — e @
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read Stack
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Returning to the example

S = aSa = abT'aa = abaTl'aa = abaaa

State Action Input read  Stack _)
9 push $ e $
q1 push S e S$ g,e—>$
Qioop  POP S, push aSa e aSa$ H
! €, S - aSa
g,e—> 8 €, S - bSb
a,a—e e, S —alb
b,b - & g, 5 - bvTla
e, T"— aTl
e,$-¢ e, T - vT

e,T — e @
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Returning to the example
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Returning to the example

S = aSa = abT'aa = abaTl'aa = abaaa

State Action Input read  Stack _)
0 push $ e $
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Returning to the example

S = aSa = abT'aa = abaTl'aa = abaaa

State Action Input read  Stack _)

o push $ e $

q1 push S e S$ g,e—>$

Qloop  POP S, push aSa ¢ aSa$

Qloop  read and pop a a Sa$ e

Qloop  POP S, push bT'a a bTaa$

Qloop  read and pop b ab Taa$ ce— S

Qloop  PoOp T, push aT ab aTaa$

Qloop  read and pop a aba Taa$ a,a—e¢
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read Stack
qo push $ e $

q push S e S$
Qioop  POP S, push aSa e aSa$
Qloop  read and pop a a Sa$
Qloop  POP S, push bT'a a bTaa$
Qloop  read and pop b ab Taa$
Qioop  POP T', push aT ab aTaa$
Qloop  Fead and pop a aba Taa$
Qioop  POp T, push ¢ aba aa$
Qloop  read and pop a abaa a$
Qloop  'ead and pop a abaaa $

Qloop  POP $ abaaa ¢
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read Stack
o push $ e $

q1 push S e S$
Qioop  POP S, push aSa e aSa$
Qloop read and pop a a Sa$
Qioop  POP S, push bTa a bTaa$
Qloop read and pop b ab Taa$
Qioop  POP T', push aT ab aTaa$
Qloop  Fead and pop a aba Taa$
Qioop  POp T, push ¢ aba aa$
Qloop read and pop a abaa a$
Qloop  'ead and pop a abaaa $

Qloop  POP $ abaaa &

Qa accept abaaa ¢
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Back from example

Consider running M on input w = wywsy-+-w,, for w; € 3.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gio0p, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w
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Back from example

Consider running M on input w = wywsy--w, for w; € X.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gio0p, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched.
Therefore, each string accepted by M is in A.

For each w € A, there is some left-most derivation of w by G. By construction, M
performs the derivation on the stack while matching leading terminals.

Thus L(M) = A. O @

11/18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.

Proof idea.
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® either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that
® has variables that are pairs of states {q,r) from the PDA,;
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Proof idea.

@ First, convert the PDA to one that
® has a single accepting state q,;
® empties its stack before accepting; and
® either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that
® has variables that are pairs of states {q,r) from the PDA,;
has start variable {q, ¢, );
has rules (¢, q) — ¢ for each q € Q;
has rules {(p,7) = (p,q){q,r) for each p,q,r € Q; and
has rules (p,q) — a{r,s)b for p,q,r,s € Q and a,b € X, if (r,u) € 6(p,a,e) and
(g,¢) € 6(s,b,u)
© Prove (by induction) that each variable (g, ) has the property (g, r) = et iff
starting M in state ¢ with an empty stack and running on input x causes M to
move to state r and end with an empty stack @
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Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.

Proof idea.

@ First, convert the PDA to one that
® has a single accepting state q,;
® empties its stack before accepting; and
® either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that
® has variables that are pairs of states {q,r) from the PDA,;
has start variable {q, ¢, );
has rules (¢, q) — ¢ for each q € Q;
has rules {(p,7) = (p,q){q,r) for each p,q,r € Q; and
has rules (p,q) — a{r,s)b for p,q,r,s € Q and a,b € X, if (r,u) € 6(p,a,e) and
(g,¢) € 6(s,b,u)
© Prove (by induction) that each variable (g, ) has the property (g, r) = et iff
starting M in state ¢ with an empty stack and running on input x causes M to
move to state r and end with an empty stack @

© Conclude that {(qo,q,) = w iff w € L(M)
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Closure properties of CFLs

The class of context-free languages is closed under
® Union
® Concatenation
® Kleene star
® PREFIX
® SUFFIX
® Reversal
® [ntersection with a regular language
® Quotient by a string
® Quotient by a regular language
We proved closure under union, concatenation, Kleene star, and PREFIX previously
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Reversal

Theorem

Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG G = (V,X, R, S).

Construct CFG G' = (V,E,R',S) where

R':{A—>uR|A—>uisaruIeinR}.
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Reversal

Theorem
Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG G = (V,X, R, S).
Construct CFG G' = (V,E,R’,S) where
R':{A—>uR | A > uisarulein R}.

To prove that L(G') = BR, we want to show that for each variable A € V' and
ve(VuxX)*, 4 =*>G u in n steps iff A =*>G' u®inn steps.

k *
Let's write = to mean = in exactly k steps.
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Proof continued

0 R 0 R .
Base case n =0. If A =5 u, thenu=u"=Aso A= u'", and vice versa.
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0 R 0 R .
Base case n =0. If A =5 u, thenu=u"=Aso A= u'", and vice versa.

Inductive step. Assume that foralln >0, A€V, andue (Vux)*, A n=_>1G w iff

n—1 R
A=gu

If A gg u, then there is some C' € V and z,7,z € (V U X)* such that u = zyz,

A n=_>1G xzCz, and C' =4 y.

-1
By the inductive hypothesis A n=>Gr 2*C2™ and by construction C' = yR. Thus
A S zRyR:cR = (a:yz)R =u”. Swapping G and G' shows the converse.
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If A gg u, then there is some C' € V and z,7,z € (V U X)* such that u = zyz,
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-1
By the inductive hypothesis A n=>Gr 2*C2™ and by construction C' = yR. Thus
A S zRyR:cR = (a:yz)R =u”. Swapping G and G' shows the converse.

Thus, A ¢ u iff A =g u’™.
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Proof continued

0 R 0 R .
Base case n =0. If A =5 u, thenu=u"=Aso A= u'", and vice versa.

Inductive step. Assume that foralln >0, A€V, andue (Vux)*, A n=_>1G w iff
A n=_>1g' ’LLR.

If A gg u, then there is some C' € V and z,7,z € (V U X)* such that u = zyz,
A n=_>1G xzCz, and C' =4 y.

-1
By the inductive hypothesis A n=>Gr 2*C2™ and by construction C' = yR. Thus
A S zRyR:cR = (a:yz)R =u”. Swapping G and G' shows the converse.

Thus, A ¢ u iff A =g u’™.

Therefore, for w € B, S = ¢ w iff S =g w™ so L(G') = BX. 0

15/18



Suffix

Theorem
Context free languages are closed under SUFFIX.

Proof.
Since SUFFIX(A) = PREFIX(AR)R and CFLs are closed under reversal and PREFIX,
CFLs are closed under SUFFIX. Ol
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Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M; = (Q1,%,T',81,q1, F1) and B be a regular
language recognized by the NFA My = (Qo, X, 0o, qo, F5).
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Let A be a CFL recognized by the PDA M; = (Q1,%,T',81,q1, F1) and B be a regular
language recognized by the NFA My = (Qo, X, 0o, qo, F5).

Construct the PDA M = (Q, X%, T, 6, q9, F') where

Q=01 XQ
q = (q1,42)
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Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M; = (Q1,%,T',81,q1, F1) and B be a regular
language recognized by the NFA My = (Qo, X, 0o, qo, F5).

Construct the PDA M = (Q, X%, T, 6, q9, F') where

Q=01 XQ
q = (q1,42)
F=F1XF2

5((q,r),a,b) = {((s,t),c) | (s,¢) € 61(q,a,b) and t € 52(7“,a)} fora € ., b,cel,

As M runs on input w, its stack and the first element of its state change according to
01 whereas the second element of its state changes according to ds. @

M accepts w iff My accepts w and My accepts w. Therefore, L(M) = An B. O
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What about intersection with another CFL?

Are context-free languages closed under intersection?
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What about intersection with another CFL?
Are context-free languages closed under intersection?
Consider 3 = {a,b, c} and

A={a"v"c" | m,n =0}

B ={a"b"c" | m,n 20}
Both B and C' are context-free. Is
AnB={a"v"c" | n20}?

How can we keep track of how many as and bs we've seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?
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Are context-free languages closed under intersection?
Consider 3 = {a,b, c} and

A={a"v"c" | m,n =0}

B ={a"b"c" | m,n 20}
Both B and C' are context-free. Is
AnB={a"v"c" | n20}?

How can we keep track of how many as and bs we've seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we'll see that B N C' is not context-free! @

18/18



