Example proof

Stephen Checkoway

January 22, 2014

We want to prove the following theorem.
Theorem. Let Σ be a finite alphabet and let $w \in \Sigma^{*}$ be a word of length at least 2. If there exist nonempty words $x, y \in \Sigma^{+}$such that $w=x y=y x$, then there exists a nonempty word $z \in \Sigma^{+}$and positive integers a and b such that $x=z^{a}$ and $y=z^{b}$.

Proof. We will prove the theorem by induction on the length of w. The base case is $|w|=2$. This case is trivial since it must be the case that $|x|=|y|=1$. Therefore, $x=y$ so $z=x$ and $a=b=1$.

For the inductive step, assume that the theorem holds for all words of length less than m. Let w be a word of length m such that $w=x y=y x$ for nonempty x and y. Write $x=x_{1} x_{2} \cdots x_{k}$ and $y=y_{1} y_{2} \cdots y_{n}$. We can assume, without loss of generality, that $k \leq n$ (otherwise swap x and y).

If $k=n$, then since $x y=y x$, we have $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{k}=y_{k}$. Therefore, $x=y$ and we can set $z=x$ and $a=b=1$.

Otherwise, $k<n$ and we have a situation that looks like this.

x	y
y	x

From the picture, it's clear that y starts with x and ends with the first $n-k$ letters in y. Formally, $y=x y_{1} y_{2} \cdots y_{n-k}$. Similarly, y ends with x so $y=y_{1} y_{2} \cdots y_{n-k} x$. Define $y^{\prime}=y_{1} y_{2} \cdots y_{n-k}$. Thus,

$$
y=x y^{\prime}=y^{\prime} x
$$

and we can apply the inductive hypothesis since $|y|=n<|w|=m$. In particular, there is a word z and integers a, c such that $x=z^{a}$ and $y^{\prime}=z^{c}$. This gives

$$
\begin{aligned}
& x=z^{a}, \\
& y=x y^{\prime}=z^{a} z^{c}=z^{a+c} .
\end{aligned}
$$

Setting $b=a+c$ proves the theorem.

