Example proof

Stephen Checkoway

January 22, 2014

We want to prove the following theorem.

Theorem. Let Σ be a finite alphabet and let $w \in \Sigma^*$ be a word of length at least 2. If there exist nonempty words $x, y \in \Sigma^+$ such that w = xy = yx, then there exists a nonempty word $z \in \Sigma^+$ and positive integers a and b such that $x = z^a$ and $y = z^b$.

Proof. We will prove the theorem by induction on the length of w. The base case is |w| = 2. This case is trivial since it must be the case that |x| = |y| = 1. Therefore, x = y so z = x and a = b = 1.

For the inductive step, assume that the theorem holds for all words of length less than m. Let w be a word of length m such that w = xy = yx for nonempty x and y. Write $x = x_1x_2\cdots x_k$ and $y = y_1y_2\cdots y_n$. We can assume, without loss of generality, that $k \leq n$ (otherwise swap x and y).

If k = n, then since xy = yx, we have $x_1 = y_1, x_2 = y_2, \ldots, x_k = y_k$. Therefore, x = y and we can set z = x and a = b = 1.

Otherwise, k < n and we have a situation that looks like this.

x	y
y	x

From the picture, it's clear that y starts with x and ends with the first n-k letters in y. Formally, $y = xy_1y_2\cdots y_{n-k}$. Similarly, y ends with x so $y = y_1y_2\cdots y_{n-k}x$. Define $y' = y_1y_2\cdots y_{n-k}$. Thus,

$$y = xy' = y'x$$

and we can apply the inductive hypothesis since |y| = n < |w| = m. In particular, there is a word z and integers a, c such that $x = z^a$ and $y' = z^c$. This gives

$$\begin{aligned} x &= z^a, \\ y &= xy' = z^a z^c = z^{a+c}. \end{aligned}$$

Setting b = a + c proves the theorem.