
CSCI 275:
Programming Abstractions

Stephen Checkoway
Slides from Molly Q Feldman

Lecture 35: Practical Concerns
Spring 2025

Questions?

Functional Language of the Week: Erlang

3

Started in the 1980s by the Swedish telecom company Ericsson

Equipped with its own runtime system to help support telecom
operations (i.e. fast transactions!)

“Some of its uses are in telecoms, banking, e-commerce,
computer telephony and instant messaging. Erlang's runtime
system has built-in support for concurrency, distribution and
fault tolerance.” from the Erlang homepage

At the language level there is support to make sure that if
one system component breaks, the code does not stop

running

Functional Language of the Week: Erlang

%% Immutable variables

> Fruits = ["banana","monkey","jungle"].

%% Map values using stdlib functions

> lists:map(fun string:uppercase/1, Fruits).

%% Fold over lists using custom functions

> lists:foldl(fun(Str, Cnt) ->

string:length(Str) + Cnt end, 0, Fruits).

18

https://www.erlang.org/

Yes, Erlang ends all
expressions with

periods!

https://www.erlang.org/

Practical Concerns

Partial answers to three big questions:

(1) What PL should I learn for what task?

(1) Why do we make new ones?

(1) Why do we have the languages that we have?

I’ll give you my (and others’) opinions on these! Not definitive, but hopefully
fun/interesting. Also, I’ll hopefully provide some helpful links.

Whirlwind Core Language Tour

Python
• The language we teach in CSCI 150

• #1 Language on the TIOBE Index

• Lots of use cases: scripting, objects, functions,
dynamically typed

• OO but has
functional parts

• The language we teach in CSCI 151

• #4. Language on the TIOBE Index

• Statically typed, object-oriented, cross-platform JVM

Java

JavaScript • Not part of our standing curriculum!

• #6 Language on the TIOBE Index

• Dynamically typed, event-based,
powers most of the internet

Which language for which task?

Which of these languages is your preferred
language out of those we teach in the department?

A.Python

B.Java

C.Racket

D.Rust

E. Something else

11

12

Think about why you like to use those languages

Syntax?

Familiarity?

Use cases?

Libraries?

Ease of use?

Something else?

Prof. Molly’s recommendation - based on
conversations with other professors &
professional developers!

Python

JavaScript (TypeScript)

Pick your OOP of Choice -
Java mostly

But there is no “one size fits all” answer

https://w3techs.com/technologies/overview/client_side_language

Most people would suggest that JavaScript is THE web
programming language to learn.

Yet what about types? TypeScript.

Shopify (powers a huge number of web transactions) and
Twitch are all written in Ruby on Rails

Rust can be compiled to WebAssembly which
interoperates with JavaScript

https://w3techs.com/technologies/overview/client_side_language

So, what options do you have when choosing
a language?

Option #1: What you know!

Sometimes, for your own personal projects or for your own
small applications, just using the language you know is
probably the best idea!

Prof. Molly’s Personal Anecdote: My first programming language
was Python and it’s the language I “reach for” the most

Steve’s: Python was my 6th programming language and also the
one I choose first: right up until it becomes complex and then I
want types so I use Rust

Option #2: Application

You can use the general type of what you’re
building to help!

Writing a quick script?
Maybe use Python or Bash!

Building a website?
Maybe use JavaScript!

Writing something that needs to be
fast? Maybe use Rust or C!

Really specific application?
Make your own domain-
specific language!

Please don’t use C if

you can help it

Aside: Libraries Are Great, Use Them In the
Real World

A lot of code you will/want to write is not new, in that
someone has written it before!

Sometimes finding a good library / API / etc. can
make the difference between picking Language A
versus Language B

And now we are
officially talking

software engineering!

Aside to the aside: Standard library is key

Every language comes with a standard library of functions, some are
better than others

C’s standard library is small, barely more than wrappers around system
calls

• E.g., doesn’t have any standard data structures like growable arrays
(vectors), maps (dictionaries), trees, or hashtables. You have to
implement them yourself or use a 3rd party library

3rd party libraries can be quite difficult to use in some languages like C

Option #3: Paradigm

Programming paradigms are the (loose) categories that
different languages can fall under. Some (common)
options include:

• Functional

• Object-Oriented

• Logic

• Imperative

Racket

Java

Python

Prolog

Paradigms Can Cause Unproductive
Boundaries

What paradigm is Python really?

“Languages do not organize into hierarchical taxonomies the
way plants and animals do; they are artificial entities that can
freely be bred across supposed boundaries. Language
authors can pick from several different bins when creating
languages, and indeed modern mainstream languages are
usually a mélange of many of these bins.” – Krishnamurthi &
Fisler

For an interesting perspective on the impact this can have in education:
https://cs.brown.edu/~sk/Publications/Papers/Published/kf-prog-paradigms-and-beyond/paper.pdf

https://cs.brown.edu/~sk/Publications/Papers/Published/kf-prog-paradigms-and-beyond/paper.pdf

Option #4: Look around you

• Look at what other companies, engineers, etc. are doing
in your particular area!

• I see this with frameworks a lot and “X as a Service”
technologies (https://github.blog/2023-11-08-the-state-
of-open-source-and-ai/#the-most-popular-
programming-languages)

• Job Ads, Github statistics, TIOBE, social, etc.
https://www.technologyreview.com/2015/04/02/168469/toolkits-for-the-mind/

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://www.technologyreview.com/2015/04/02/168469/toolkits-for-the-mind/

Have you learned a programming language outside
of the classroom?

A.Yes, as part of a job or internship

B.Yes, for fun!

C.Both A & B

D.Not yet!

23

Option #5: You don’t get to choose!

Learning programming languages is a skill that gets easier
over time

Many folks do not know a certain language (but do know
CS fundamentals!) and learn a new language on the job

The more kinds of languages you have exposure to, the
easier to learn a new language in my opinion

Why it’s good to learn Racket!

Aside: Real World Applications of Racket?

The Scribble Documentation Tool: https://docs.racket-
lang.org/scribble/

Racket Con features talks from a variety of speakers over the years!
https://con.racket-lang.org/

Former topics are:

• Academic projects on Types

• Web programming

• Game programming

https://docs.racket-lang.org/scribble/
https://docs.racket-lang.org/scribble/
https://con.racket-lang.org/

Why do we make more
languages?

Why do you think we make more languages?

27

A lot of our “Functional Programming
Languages of the Week” have been “new”
languages
What narratives do they share in common?

• X + Y = Z and Z is therefore cooler/more
usable/etc.

• A “new” version of an older language

• Simply adding functional features to existing
languages Note there is a difference between versions of a

language and an entirely new language – this line
is blurry though (e.g. Racket was a Scheme
variant until it wasn’t) https://www2.ccs.neu.edu/racket/pubs/manifesto.pdf

https://www2.ccs.neu.edu/racket/pubs/manifesto.pdf

BASIC – “Beginner’s All Purpose Symbolic
Instruction Code” (1964)

Initiative to help non-STEM students learn to program from
Dartmouth College in 1964
• BASIC was designed in the context of time-sharing mainframes

“I tried, briefly, to develop simple subsets of Fortran and
ALGOL, but found quickly that such could not be done” (Kurtz
in Time)

Harry McCraken. "Fifty Years of BASIC, the Programming Language That Made
Computers Personal". Time. April 29, 2014.

Pascal (1971)

“The development of the language Pascal is based on two
principal aims. The first is to make available a language
suitable to teach programming as a systematic discipline
based on certain fundamental concepts clearly and
naturally reflected by the language. The second is to
develop implementations of this language which are
both reliable and efficient on presently available
computers, dispelling the commonly accepted notion
that useful languages must be either slow to compile or
slow to execute, and the belief that any nontrivial system is
bound to contain mistakes forever.”

Wirth, N. (1971). The programming language Pascal.
Acta informatica, 1(1), 35-63.

Rust

Started as a hobby project taking good features from older languages

Rust changed over time to simplify the language and became a great systems
programming language (fast, strong type system, great memory safety without
garbage collection)

Network Switch Languages

In the last decade, network switches – the devices which
receive and forward internet packets – have moved from
being hardware configurable to software configurable

This gave rise to programming language to control the
switches

Why new languages?

Domain-specific languages let us write code focused on
the problem domain (here: network packet routing)

Switches to make decisions about what to do with
incoming network packets quickly

A language restricted to this task can produce software or
hardware (e.g., programming FPGAs) to route packets
efficiently

https://github.com/ethereum/solidity

https://github.com/ethereum/solidity

P4

https://p4.org/

https://p4.org/

Language Design is like Puzzle Pieces

Language designers tend to be balancing many
different factors:

• Facilitating adoption (keywords, curly braces, etc.)

• Paradigm or “underlying functionality”

• Their motivation
• Application

• Feature (Research or what not)

• Other need

Esoteric programming languages

Odd languages not really designed for use

Some are silly, others impenetrable

Some resemble theoretical models of computation

Some aim for simplicity of the language (usually at the expense of
making programming complex)

Shakespeare Programming Language
Do Not Adieu, a play in two acts.

Romeo, a young man with a remarkable patience.

Juliet, a likewise young woman of remarkable grace.

Ophelia, a remarkable woman much in dispute with Hamlet.

Hamlet, the flatterer of Andersen Insulting A/S.

Act I: Hamlet's insults and flattery.

Scene I: The insulting of Romeo.

[Enter Hamlet and Romeo]

Hamlet:
You lying stupid fatherless big smelly half-witted coward! You
are as stupid as the difference between a handsome rich brave
hero and thyself! Speak your mind!

…

All examples from https://en.wikipedia.org/wiki/Shakespeare_Programming_Language

Declares variables Romeo, Juliet,

Ophelia, and Hamlet. Descriptions

are ignored

Labels for conditionals and gotos. E.g.,

Juliet:

Am I better than you?

Hamlet:

If so, let us proceed to scene II.

Brings variables to the stage to be acted upon by characters’ lines

Hamlet is speaking to Romeo so

this is assigning a value to Hamlet

based on the combination of nouns

and adjectives
Speak your mind! means output a character

Unlambda

Based on SKI combinator calculus which is closely related to lambda
calculus with additional I/O and explicit function application operator

Substitution: S x y z = x z (y z) [In lambda calc: λ x. λy. λz. xz(yz)]

Constant functions: K x y = x [λx. λy. x]

Identity: I x = x [λx. x]

Unlambda example:
Fibonacci numbers output as *

```s``s``sii`ki

`k.*``s``s`ks

``s`k`s`ks``s``s`ks``s`k`s`kr``s`k`sikk

`k``s`ksk

http://www.madore.org/~david/programs/unlambda/

*

*

**

***

*****

********

*************

*********************

**********************************

*******************************************************

…



Piet
Hello world program

Programs are 20-color bitmaps

Variables are stored on a stack

The instruction pointer moves 
through colored regions

Changing regions performs 
functions

https://en.wikipedia.org/wiki/Esoteric_programming_language

https://en.wikipedia.org/wiki/File:Piet_Program_Hello_World.gif


Ook!

Three syntax elements: Ook. Ook? and Ook!

Pairs of syntax elements form 8 commands

Ook. Ook? Move the memory pointer to the next cell

Ook? Ook. Move the memory pointer to the previous cell

Ook. Ook. Increment the value in current cell

Ook! Ook! Decrement the value in the current cell

Ook. Ook! Read a character from stdin into the current cell

Ook! Ook. Print the character in the current cell

Ook? Ook! Move to the following matching Ook? Ook? if current cell is nonzero

Ook? Ook? Move to the previous matching Ook? Ook!

https://www.dangermouse.net/esoteric/ook.html



Single instruction set computer

Related to esoteric programming languages, we have esoteric 
instruction set architectures (take CSCI 210 to learn about ISAs!)

Single instruction set computers are ones that have a single (usually 
complex) instruction

E.g., subtract and branch if less than or equal to zero



Subtract and branch if less than or equal to 
zero (subleq)

subleq a, b, c is the only instruction which has the behavior
Mem[b] = Mem[b] – Mem[a]

if Mem[b] ≤ 0 then

goto c

The operands a, b, and c are memory addresses

Can perform any computation, e.g., to implement add a, b we have

subleq a, Z

subleq Z, b

subleq Z, Z

where Z is the address of a 0 value in memory

Z = Z – a (storing -a into Z)

b = b – Z (storing b – -a into b)

Z = Z – Z (storing 0 into  Z)

If the third operand is omitted, it is 

implicitly the address of the following 

instruction


	Slide 1: CSCI 275:  Programming Abstractions
	Slide 2: Questions? 
	Slide 3: Functional Language of the Week: Erlang
	Slide 4: Functional Language of the Week: Erlang
	Slide 5: Practical Concerns
	Slide 6: Whirlwind Core Language Tour
	Slide 7: Python
	Slide 8: Java
	Slide 9: JavaScript
	Slide 10: Which language for which task?
	Slide 11: Which of these languages is your preferred language out of those we teach in the department?
	Slide 12: Think about why you like to use those languages
	Slide 13: Prof. Molly’s recommendation - based on conversations with other professors & professional developers!
	Slide 14: But there is no “one size fits all” answer
	Slide 15: So, what options do you have when choosing a language? 
	Slide 16: Option #1: What you know!
	Slide 17: Option #2: Application
	Slide 18: Aside: Libraries Are Great, Use Them In the Real World
	Slide 19: Aside to the aside: Standard library is key
	Slide 20: Option #3: Paradigm
	Slide 21: Paradigms Can Cause Unproductive Boundaries
	Slide 22: Option #4: Look around you
	Slide 23: Have you learned a programming language outside of the classroom?
	Slide 24: Option #5: You don’t get to choose!
	Slide 25: Aside: Real World Applications of Racket?
	Slide 26: Why do we make more languages?
	Slide 27: Why do you think we make more languages?
	Slide 28: A lot of our “Functional Programming Languages of the Week” have been “new” languages
	Slide 29: BASIC – “Beginner’s All Purpose Symbolic Instruction Code” (1964)
	Slide 30: Pascal (1971)
	Slide 31: Rust
	Slide 33: Network Switch Languages
	Slide 34: Why new languages?
	Slide 35: P4
	Slide 36: Language Design is like Puzzle Pieces
	Slide 37: Esoteric programming languages
	Slide 38: Shakespeare Programming Language
	Slide 39: Unlambda
	Slide 40: Unlambda example:
	Slide 41: Piet
	Slide 42: Ook!
	Slide 43: Single instruction set computer
	Slide 44: Subtract and branch if less than or equal to zero (subleq)

