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Goal for the next few days

(lambda (x y) (+ x y)))

1. Where does the lambda keyword actually come 

from?

2. Why does Racket’s syntax look the way it does?

3. A bunch of other cool things

The content in these lectures is adapted from “Types and Programming Languages” by Pierce, Cornell’s CS 4110/6110 Notes and Phil Wadler’s 

”Propositions as Types”



MiniScheme

In the MiniScheme project, we wrote an interpreter for a 

language called MiniScheme

• MiniScheme has a formal grammar that we wrote down

• We made parse trees to represent an intermediate 

version of the language

• We then interpreted those parse trees to evaluate 

MiniScheme expressions



Learning a Language & Practical Concerns

What I want you to take away from this class is a 

practiced, defined notion of

Language design and implementation fundamentals 

What’s a good way to learn a language?

Know the most fundamental underlying structure!



To Spoil the Punchline….

The rest of this week we are going to talk about the first 

programming language

It’s called the lambda calculus

Invented in 1935 by Alonzo 

Church



What is Scheme?

http://dspace.mit.edu/bitstream/handle/1721.1/5794/AIM-349.pdf

http://dspace.mit.edu/bitstream/handle/1721.1/5794/AIM-349.pdf


Introduction to the 
Lambda Calculus



The Lambda Calculus

Much like other languages, the lambda calculus has a syntax and 

a semantics. Here is its syntax:  

e :: = x

λx. e

e1 e2

Use parentheses for grouping terms together (λx. λy. x) a b

Function application is left associative: f x y is the same as (f x) y

variable

function abstraction

function application



How do we compute with this?

It is very simple: all we can do in the base lambda 

calculus is apply functions to arguments.

Examples: 
(λx. x) a gives a

(λx. x (λx. x)) b gives us b (λx. x)



How do we compute with this?

It is very simple: all we can do in the base lambda 

calculus is apply functions to arguments.

Examples: 
(λx. x) a gives a

(λx. x (λx. x)) b gives us b (λx. x)

These terms are called 

reducible expressions

Substituting arguments into 

functions is called beta-

reduction



How do we compute with the lambda 
calculus?
We can actually write many more meaningful 

programs than you might expect!

Church 

Booleans 

Church 

Numerals 



Reminder: Currying

Currying is the approach of returning a function from another 
function:

(define equal-x-checker 

(lambda (x)

(lambda (y)

(equal? y x)))

Then (equal-x-checker 3) will be a procedure that checks 
whether any input is equal to 3

((equal-x-checker 3) 4) is #f



Currying is default in the lambda calculus

Curried functions are actually the only multi-argument 

functions in the lambda calculus:

λx. λy. y

We could add something like below, but we choose 

not to:

λxy. y



Church Booleans

We can encode values for true and false. We call these “Church Booleans”

Intuition: true and false are two argument functions; they act like (if 

#t t f) and (if #f t f) in Scheme

true t f = t

false t f = f



Church Booleans

Rewriting these in lambda calculus

true = λt. λf. t

false = λt. λf. f

Variable names don’t matter!



Encoding And 

and = λb. λc. b c false

true = λt. λf. t

false = λt. λf. f

Let’s walk through the fact this works 

on the board !



If
true = λt. λf. t
false = λt. λf. f

Is there another way to encode and?

A. λb. λc. b c c

B.λb. λc. b c b

C.λb. λc. b c true

D.Something else

E.Nope, only one and! 

Remember we defined previously as  
and = λb. λc. b c false



Church Numerals
We can also encode numbers in the lambda calculus

Intuition: We’ll encode numbers as repeated applications of a function f to a value 
x

Think of each number as a two argument function that applies its first argument to 
its second argument that number of times

zero f x = x

one f x = f x

two f x = f (f x)

three f x = f (f (f x))



Church Numerals

Rewriting this in lambda calculus gives

zero = λf. λx. x

one = λf. λx. f x

two = λf. λx. f (f x)

n = λf. λx. f (f …(f x)…)



Wait. If 
false = λt. λf. f
and 
zero = λf. λx. x

Is this a problem?

A. Yes

B. No because they have different types (false is a 

Boolean and zero is a number)

C. No because they have different parameters

D. No because we can use the same function in 

different contexts to do different things



Given one, how can we get two?

We can define a successor function:

one = λf. λx. f x

succ = λn. λf. λx. f (n f x)

To get:

two =  λf. λx. f (f x)



Let’s try it out: 

https://capra.cs.cornell.edu/lambdalab/

https://capra.cs.cornell.edu/lambdalab/


How can we add two numbers together?

Given two numbers m and n, discuss in your small 

groups how you might intuitively compute m + n with 

just the successor function. 



How can we add two numbers together?

One way: given m, apply the successor function m 

times to n!

plus = λm. λn. n succ m

Let’s try it out!



How can we write a recognizer? 

Let’s write a recognizer (something that returns a 
Boolean): iszero

This should return (our definition) of true if the 
argument is zero, and false otherwise

Idea:  zero f x = x for any f and x

n f x = f (f … (f x)…)



iszero continued

We want: iszero zero = true

First attempt:

iszero n = n f true (for some f to be determined shortly)

iszero zero = zero f true

= (λf. λx. x) f true

→ true



iszero continued

We want: iszero one = false

Need: a function f such that f x = false so how about that one

iszero n = n (λx. false) true

iszero two = two (λx. false) true

= (λf. λx. f (f x)) (λx. false) true

→ (λx. false)((λx. false) true)

→ (λx. false) false

→ false



Bonus stuff: Lists

Let’s implement lists in the lambda calculus

We need:

• cons — creating a pair

• fst — car in Scheme

• snd — cdr in Scheme

• null — the empty list

• isnull — null? in Scheme



The “easy” stuff: Pairs

For Church Booleans, we decided to use two-argument functions that 
returned their first (for true) or second (for false) arguments

We have a similar situation where there are two parts to the pair and 
we want fst to return the first element of the pair and snd to return 
the second element

For Church pairs, let’s define the pair as a function that takes a two-
argument function and applies that to the two parts of the pair ➜



Pairs

cons = λx. λy. λf. f x y

• Ex. cons (a b) c → λf. f (a b) c

fst = λp. p true # fst (cons x y) → x

snd = λp. p false # snd (cons x y) → y



From pairs to lists (Tricky!)

A list is either a pair that we get from cons x y or is null

Tricky definition:

null = false

isnull = λp. p _____ true

• isnull null = (λp. p _____ true) null

→ null _____ true

= false _____ true

→ true       (because false x y → y)



isnull
isnull = λp. p _____ true

What if p is not null? What if it’s cons x y? 

cons x y → λf. f x y

isnull (λf. f x y)

= (λp. p _____ true) (λf. f x y)

→ (λf. f x y) _____ true

→ _____ x y true

→ false



isnull (λf. f x y)

= (λp. p _____ true) (λf. f x y)

→ (λf. f x y) _____ true

→ _____ x y true

→ false

What can we replace the ____ with such that the final 

reduction is correct? Work on this in groups and when you 
have a solution, select any answer



Lists

cons = λx. λy. λf. f x y

fst = λp. p true

snd = λp. p false

null = false

isnull = λp. p (λx. λy. λz. false) true
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