
CSCI 275:
Programming Abstractions
Lecture 29: Parameter Passing

Spring 2025

Stephen Checkoway

Slides from Molly Q Feldman

Parameter-passing mechanisms

Parameter Passing

Parameter passing mechanisms help us understand how values

are passed between procedures

In essence: how do we associate the formal parameters

with the arguments?

Terminology reminder

(lambda (x y z) …): x, y, and z are the formal parameters

(f 25 (+ 8 36) “hello”): 25, (+ 8 36), and “hello” are the arguments

(We should probably call it argument passing rather than parameter passing,

but we don’t)

Two Major Approaches*

Call by value (CBV)
Arguments are evaluated in the

caller's environment

Values are bound to parameters

Call by name (CBN)
Arguments are not

evaluated, passed “as is”

You can think about it as the

“text” of the argument is

passed and replaces the

parameters in the function's

body
Most languages you’ve

used work this way

((lambda (x) 5) (/ 1 0))

What will the result be in Call by Value?

In Call by Name?

A. CBV: 5

CBN: 5

B. CBV: divide by zero error

CBN: divide by zero error

C. CBV: divide by zero error

CBN: 5

D. Something else
12

Thanks to “Design Concepts in Programming Languages” by Turbak, Gifford, and Sheldon for this example

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

returns what in Racket?A. 6

B. 5

C. 0

D. 1

E. Error
13

Call by Value Example in Racket

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

f is called with value 5, so x is bound to 5

v is set to 1

x equal to 5 is returned

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

The text of f's body becomes the two expressions (by replacing

x with the text of the argument)

(set! v (+ v 1))

(+ v 5)

v is set to 1 and then 6 is returned

Call by Name Example in Racket

PL Theory vs. PL Practice

• When we talk about Call by Value or Call by Name in theory,

we can have a nice conversation

• Language implementations make these types of formalisms

real and therefore messy

• This is why having a parameter passing discussion for Java

is hard

PL Practice: Variations on CBV
Depending on the language at hand, many use a call by

value approach or a related approach

Related approaches:

• Call by sharing

• Call by reference

Basic principle: the callee function gets a copy of what

the caller supplies

Most prevalent in languages with

objects

These are subtlety different, so

much so call by sharing tends to not

be used as a term

Caller

Callee

5

5

(Classic) Call by Value

Caller

Callee

Call by Sharing

Caller

Callee

Call by Reference

5

Caller

Callee

Call by Reference

Call by Sharing versus Call by Reference
Call by Sharing is when you get your own copy of the

pointer

• What’s happening in Java and Python

• Can mutate the object, cannot replace it

Call by Reference is when you get a reference to the

object (a “pointer to the value”)

• What’s happening in C++

• Can entirely replace the object

Call by Reference in C++

Python Tutor Example

Call by Sharing in Python

Python Tutor Example

https://pythontutor.com/render.html#code=%23include%20%3Ciostream%3E%0A%0Avoid%20change_value%28int%20%26x%29%20%7B%0A%20%20x%20%3D%2010%3B

%0A%7D%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20num%20%3D%200%3B%0A%20%20change_value%28num%29%3B%0A%20%20std%3A%3Acout%20
%3C%3C%20num%20%3C%3C%20%22%5Cn%22%3B%0A%20%20return%200%3B%0A%7D&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origi
n=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

https://pythontutor.com/render.html#code=def%20change_value%28lst%29%3A%0A%20%20%20%20lst.append%2825%29%0A%20%20%20%20lst%20%3D%20%5B1,%202

,%203%5D%0A%0Adef%20main%28%29%3A%0A%20%20%20%20vals%20%3D%20%5B10,%2020,%2030%5D%0A%20%20%20%20change_value%28vals%29%0A%20
%20%20%20print%28vals%29%0A%0Amain%28%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-
frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

https://pythontutor.com/visualize.html
https://pythontutor.com/visualize.html

Institute Professor of Computer Science at
the Massachusetts Institute of Technology

Researcher in programming languages and
systems: what are the rules and proofs
behind how we communicate with computers

Developed the programming language CLU,
defines call by sharing in it’s manual

Turing Award Winner

Aside: Prof. Barbara Liskov

Parameter Passing Is a Design Choice

Different languages have made different choices!

Call by Value in JavaScript in PythonTutor

https://pythontutor.com/visualize.html#mode=edit

Call by Name in TeX
TeX is a macro language for writing documents

Parameter Passing Is a Design Choice

With varying levels of precision and difficulty, we could

make MiniScheme work with Call by Value, Call by Name,

or Call by Reference

We chose classic Call by Value in our implementation

when implementing lambdas

Example: if we wanted MiniScheme as CBN

We can make MiniScheme use Call by Name via function re-

writing

• Don't evaluate arguments at all!

• In (apply-proc p args), rewrite the procedure's body

(which is a parse tree) replacing each use of a parameter with

the parse tree for the corresponding argument

	Slide 1: CSCI 275: Programming Abstractions
	Slide 8: Parameter-passing mechanisms
	Slide 9: Parameter Passing
	Slide 10: Terminology reminder
	Slide 11: Two Major Approaches*
	Slide 12: ((lambda (x) 5) (/ 1 0)) What will the result be in Call by Value? In Call by Name?
	Slide 13: (let* ([v 0] [f (lambda (x) (set! v (+ v 1)) x)]) (f (+ v 5))) returns what in Racket?
	Slide 14: Call by Value Example in Racket
	Slide 15: Call by Name Example in Racket
	Slide 16: PL Theory vs. PL Practice
	Slide 17: PL Practice: Variations on CBV
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Call by Sharing versus Call by Reference
	Slide 23: Call by Reference in C++
	Slide 24
	Slide 25: Parameter Passing Is a Design Choice
	Slide 26
	Slide 27: Call by Name in TeX
	Slide 28: Parameter Passing Is a Design Choice
	Slide 29: Example: if we wanted MiniScheme as CBN

