
CSCI 275:
Programming Abstractions
Lecture 25: MiniScheme G (set! & begin)

Spring 2025

Stephen Checkoway

Slides from Molly Q Feldman

Notes on MiniScheme

• There is no ‘(1 2 3) list in MiniScheme, only

(list 1 2 3)

• If you’re not using structs, please stop, reimplement,

and continue.
• Make sure they include #:transparent for

debugging purposes!

set! and begin expressions

Are you annoyed you can’t change a variable’s
value in Racket?

I’ve got good news: you totally can

I’ve also got bad news: in this class, we’re going to use this ability only for

implementing one aspect of MiniScheme

Functions in Scheme/Racket that change values have a ! in their name

(pronounced “bang”)

Mutation in Racket is done using set!

To mutate variables as we would in other languages,
we can use (set! var value)

(let ([v 10])

(displayln v)

(set! v 20)

(displayln v))

produces
10

20

What is the value of
(let ([x 10])

(+ x

(let ([x 20])

x)

x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60
9

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

returns what in Racket?
A. 6

B. 5

C. 0

D. 1

E. Error
10

Evaluation of set!

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

f is called with value 5, so x is bound to 5

v is set to 1

x equal to 5 is returned

What is the result of calling(is-empty ‘(1 2))?

(define (is-empty lst)

(if (empty? lst)

0

(displayln lst)

(is-empty (rest lst))))

A. Returns: 0

B. Prints: (1 2)

(2)

Returns: 0

C. Prints: (1 2)

(2)

D. Error

E. Something else

begin in Racket

A special form to allow multiple things to evaluate, returning only
the result of the last one

(begin

(define y 23)

y)

> 23

lambdas, let and cond have

“implicit begin” behavior - most
useful in combination with set! or

printing

Side effects

Functions compute and return values (lambda (x) (+ x 3))

Everything else they might do is a side effect

Examples

• Modifying a global variable (set! var value)

• Performing I/O (e.g., (read) or (displayln x)

• Raising exceptions (error ‘foo “error message”)

Side Effects in functional languages

In functional languages, we tend to want our code to have as

few side effects as possible

• We do not want to affect the scope outside of a function’s

body

This plays a role in why functional languages do not typically

employ:

• Graphics

• Easy print debugging

• Web programming (but Elm!)

What does running the following code output in DrRacket?
(+ 1

(begin

(println “hello world”)

2))

A. “hello world”
3

B. “hello world”

C. Error

D. 3

“hello world”

E. Something else

1

6

What is the value of
(let ([x 10])

(+ x

(begin

(set! x 20)

x)

x))

This is the sum of 3 numbers
A. 30

B. 40

C. 50

D. 60
1

7

MiniScheme G

MiniScheme G: set! and begin

EXP → number parse into lit-exp

| symbol parse into var-exp

| (if EXP EXP EXP) parse into ite-exp

| (let (LET-BINDINGS) EXP) parse into let-exp

| (lambda (PARAMS) EXP) parse into lambda-exp

| (set! symbol EXP) parse into set-exp

| (begin EXP*) parse into begin-exp

| (EXP EXP*) parse into app-exp

LET-BINDINGS → LET-BINDING*
LET-BINDING → [symbol EXP]*

PARAMS → symbol*

Assignments

Assignment expressions are different than the functional parts of

MiniScheme

The set! expression introduces mutable state into our language

We're going to use a Racket box to model this state

https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html

Boxes in Scheme

box is a data type that holds a mutable value

Constructor: (box val)

Recognizer: (box? obj)

Getter: (unbox b)

Setter: (set-box! b val)

Example usage

We can create a box holding the value 275 with

(define b (box 275))

We can get the value in the box with (unbox b)

We can change the value in the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in non-functional languages

set-box! vs. set!

Boxes add a layer of indirection

(let ([num 25]

[boxed-num (box 25)])

…)

Changing num via set! modifies the

value in the environment

Changing boxed-num via set-box!

modifies the value in the box

Variable Value

num 25

boxed-num 25

Environment

(define (increment x)

(set! x (+ x 1)))

(define (increment-box b)

(set-box! b (+ (unbox b) 1)))

(let ([num 25]

[boxed-num (box 25)])

(printf "before num=~v~n" num)

(increment num)

(printf "after num=~v~n" num)

(printf "before boxed-num=~v~n" (unbox boxed-num))

(increment-box boxed-num)

(printf "after boxed-num=~v~n" (unbox boxed-num)))

Output:
before num=25

after num=25

before boxed-num=25

after boxed-num=26

Implementing set!

To implement set! in MiniScheme

• [Prep Work] Change the values in the environment so that

everything in the environment is in a box

• [Prep Work] When we evaluate a var-exp, we'll lookup the

variable in the environment, unbox the result, and return it

• [Main Implementation] When we evaluate a set expression
such as (set! x 23), we'll lookup x in the environment to

get its box and then set the value using set-box!

We can do this in four simple steps

Step 1 for Implementing set!

We need to box every value in the environment

Find every place you extend the environment and replace each

call
(env syms vals old-env)

with
(env syms (map box vals) old-env)

Why? We want to

support being able to
run set! on any

sym!

Step 2 for Implementing set!

Do not change your env-lookup procedure

Do change the line in eval-exp that evaluates var-exp expressions to
[(var-exp? tree)

(unbox (env-lookup e (var-exp-sym tree)))]

At this point, the interpreter should work exactly as it did before you

introduced boxes!

Step 3 for Implementing set!

Set expressions have the form (set! sym exp)

You need a new data type for these, I used set-exp

When parsing, put the unparsed symbol
(i.e., 'x rather than (var-exp 'x))

into the set-exp and the parsed expression exp

Step 4 for Implementing set!

Inside eval-exp, you'll need some code
[(set-exp? tree)

(set-box! (env-lookup …)

(eval-exp …))]

What value should (set! x 10) return in MiniScheme?

A.The original value of x

B.The new value of x (10 in this case)

C.False

D.null

E.Nothing (which Racket calls void)

30

Running set! in Racket

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Notes on MiniScheme
	Slide 6: set! and begin expressions
	Slide 7: Are you annoyed you can’t change a variable’s value in Racket?
	Slide 8: Mutation in Racket is done using set!
	Slide 9: What is the value of (let ([x 10]) (+ x (let ([x 20]) x) x)) This is the sum of 3 numbers
	Slide 10: (let* ([v 0] [f (lambda (x) (set! v (+ v 1)) x)]) (f (+ v 5))) returns what in Racket?
	Slide 11: Evaluation of set!
	Slide 12: What is the result of calling(is-empty ‘(1 2))? (define (is-empty lst) (if (empty? lst) 0 (displayln lst) (is-empty (rest lst))))
	Slide 13: begin in Racket
	Slide 14: Side effects
	Slide 15: Side Effects in functional languages
	Slide 16: What does running the following code output in DrRacket? (+ 1 (begin (println “hello world”) 2))
	Slide 17: What is the value of (let ([x 10]) (+ x (begin (set! x 20) x) x)) This is the sum of 3 numbers
	Slide 18: MiniScheme G
	Slide 19: MiniScheme G: set! and begin
	Slide 20: Assignments
	Slide 21: Boxes in Scheme
	Slide 22: Example usage
	Slide 23: set-box! vs. set!
	Slide 24
	Slide 25: Implementing set!
	Slide 26: Step 1 for Implementing set!
	Slide 27: Step 2 for Implementing set!
	Slide 28: Step 3 for Implementing set!
	Slide 29: Step 4 for Implementing set!
	Slide 30: What value should (set! x 10) return in MiniScheme?
	Slide 31: Running set! in Racket

