CSCI 275:
Programming Abstractions

Lecture 25: MiniScheme G (set! & begin)
Spring 2025

Stephen Checkoway 2 s
Slides from Molly Q Feldman

Notes on MiniScheme

 Thereisno ‘(1 2 3) listin MiniIScheme, only
(list 1 2 3)

 |f you're not using structs, please stop, reimplement,

and continue.
* Make sure they Include #:transparent for

debugging purposes!

set ! and begin expressions

Are you annoyed you can’t change a variable’s
value in Racket?

I've got good news: you totally can

I've also got bad news: in this class, we're going to use this ability only for
Implementing one aspect of MiniScheme

Functions in Scheme/Racket that change values have a ! in their name
(pronounced “bang”)

Mutation In Racket Is done using set!

To mutate variables as we would In other languages,
we can use (set! wvar wvalue)

(let ([v 10])
(displayln wv)
(set! v 20)
(displayln v))

produces
10

2.0

What Is the value of
(let ([x 10]7)

(+ X
(let ([x 20])
X)

X))

This I1s the sum of 3 numbers
A. 30

B. 40
C.50
D. 60

t* ([v O]
£ (lambda (x)
(set! v (+ v 1))
x) 1)
(£ (+ v 2)))
returns what in Racket?

A. 6
B.5
C.0
D.1

E. Error

Evaluation of set!

(let> ([v O
o

ambda (x)
(set! v (+ v 1))

x) 1)
(£ (+ v 35)))

£ 1S called with value 5, so x Is bound to 5
v IS setto 1
x equal to 5 Is returned

What Is the result of calling (is-empty ‘(1 2))?

(def]

1s—empty 1lst)
empty? 1lst)

displayln 1lst)
1s—empty (rest 1lst))))

(
=
0
(
(

A. Returns: O C. Prints: (1 2)

2
B. Prints: (1 2))

(2) D. Error

Returns: O E. Something else

begin In Racket

A special form to allow multiple things to evaluate, returning only
the result of the last one

(begin
(define v 23)

V)
> 23

lambdas, let and cond have
‘Implicit begin” behavior - most

useful In combination with set! or
printing

Side effects

Functions compute and return values (lambda (x) (+ x 3))

Everything else they might do Is a side effect

Examples

* Modifying a global variable (set! var value)

 Performing I/O (e.qg., (read) or (displayln x)

—

» Raising exceptions (error ‘f

OO0 “error message’)

Side Effects In functional languages

In functional languages, we tend to want our code to have as
few side effects as possible

* We do not want to affect the scope outside of a function’s
body

This plays a role in why functional languages do not typically
employ:

» Graphics

» Easy print debugging

* Web programming (but EIm!)

What does running the following code output in DrRacket?
(+ 1
(begin
(println “hello world”) M ;he”o world”
2))

B. “hello world”

C. Error
D. 3

“hello world”

E. Something else

What Is the value of
(let ([x 10])

(+ X
(begiln
(set! x 20)
X)

X))

This I1s the sum of 3 numbers
A. 30

B. 40
C.50
D. 60

MiniIScheme G

MiniScheme G: set! and begin

EXP — number parse Into 1it-exp
| symbol parse Into var-exp
| (1If EXP EXP EXP) parse Into ite-exp
| (let (LET-BINDINGS) EXP) parse Into let-exp
| (lambda (PARAMS) EXP) parse Into lambda-exp
| (EXP EXP*) parse Into app-exp

LET-BINDINGS — LET-BINDING*
LET-BINDING — [symbol EXP 1*

PARAMS — symbol®

Assignments

Assignment expressions are different than the functional parts of
MiniScheme

The set! expression introduces mutable state Iinto our language

We're going to use a Racket box to model this state

https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html

Boxes In Scheme

box IS a data type that holds a mutable value

Constructor: (box wval)
Recognizer: (box? obj)
Getter: (unbox b)

Setter: (set-box! b wval)

Example usage

We can create a box holding the value 275 with
(define b (box 275))

We can get the value In the box with (unbox b)
We can change the value In the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in nhon-functional lanquages

set-box! vs. set!

Boxes add a layer of indirection

(let ([num 25]
[boxed—-num (box 25)])

)

Changing num via set! modifies the
value In the environment

Changing boxed-num via set-box!
modifies the value In the box

Environment

NUIT

boxed—num

20

——

2D

(define

(Lncrement X)

(set! x

(define

(set-box!

(+

x 1)))

(Lncrement-box Db)

b (+ (unbox b) 1)))

(let ([num 25]

—~

(print:

—

(print:

(print:

—

(print:

boxed-num (box 25)1])

"before num=~v~n" num)
(Lncrement num)

"a:

"ter num=~v~n" num)

"before boxed—-num=~v~n"
(Lncrement-box boxed—-num)

"ter boxed—-num=~v~n"

"a:

Output:

before num=25

after num=25
fore boxed—-num=25
fter boxed—-num=26

(unbox boxed—-num))

(unbox boxed—-num)))

Implementing set!

To implement set! In MiniScheme
* [Prep Work] Change the values in the environment so that
everything in the environment iIs in a box

* [Prep Work] When we evaluate a var-exp, we'll lookup the
variable In the environment, unbox the result, and return it

* IMain Implementation] \When we evaluate a set expression
such as (set! x 23), we'll lookup x In the environment to

get its box and then set the value using set-box!

We can do this in four simple steps

Step 1 for Implementing set! NG

support being able to
run set! on any

sym!

We need to box every value in the environment

FInd every place you extend the environment and replace each
call

(env syms vals old-env)

with

(env syms (map box vals) old-env)

Step 2 for Implementing set!

Do not change your env-lookup procedure

Do change the line In eval-exp that evaluates var-exp expressions to
 (Vvar—-exp? tree)

(env-lookup e (var—-exp-sym tree))) |

At this point, the interpreter should work exactly as i1t did before you
Introduced boxes!

Step 3 for Implementing set!

Set expressions have the form (set! sym exp)

You need a new data type for these, | used set-exp

When parsing, put the unparsed symbol
(l.e., 'x rather than (var-exp 'x))
INto the set-exp and the parsed expression exp

Step 4 for Implementing set!

Inside eval-exp, you'll need some code
| (set—-exp? tree)
(set-box! (env-lookup ..)
(eval—-exp ..))]

What value should (set! x 10) returnin MiniScheme?

A. The original value of x

B. The new value of x (10 In this case)

C.False

D.null

E.Nothing (which Racket calls void)

Running set! In Racket

Welcome to DrRacket, version 8.5 [Cs].
Language: racket, with debugging; memory limit: 128 MB.

> (define x 21)

> (define res (set! x 30))
> res

> (void? res)

#1

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Notes on MiniScheme
	Slide 6: set! and begin expressions
	Slide 7: Are you annoyed you can’t change a variable’s value in Racket?
	Slide 8: Mutation in Racket is done using set!
	Slide 9: What is the value of (let ([x 10]) (+ x (let ([x 20]) x) x)) This is the sum of 3 numbers
	Slide 10: (let* ([v 0] [f (lambda (x) (set! v (+ v 1)) x)]) (f (+ v 5))) returns what in Racket?
	Slide 11: Evaluation of set!
	Slide 12: What is the result of calling(is-empty ‘(1 2))? (define (is-empty lst) (if (empty? lst) 0 (displayln lst) (is-empty (rest lst))))
	Slide 13: begin in Racket
	Slide 14: Side effects
	Slide 15: Side Effects in functional languages
	Slide 16: What does running the following code output in DrRacket? (+ 1 (begin (println “hello world”) 2))
	Slide 17: What is the value of (let ([x 10]) (+ x (begin (set! x 20) x) x)) This is the sum of 3 numbers
	Slide 18: MiniScheme G
	Slide 19: MiniScheme G: set! and begin
	Slide 20: Assignments
	Slide 21: Boxes in Scheme
	Slide 22: Example usage
	Slide 23: set-box! vs. set!
	Slide 24
	Slide 25: Implementing set!
	Slide 26: Step 1 for Implementing set!
	Slide 27: Step 2 for Implementing set!
	Slide 28: Step 3 for Implementing set!
	Slide 29: Step 4 for Implementing set!
	Slide 30: What value should (set! x 10) return in MiniScheme?
	Slide 31: Running set! in Racket

