
CSCI 275:
Programming Abstractions
Lecture 23: Streams (cont.)

Spring 2025

Stephen Checkoway

Slides from Molly Q Feldman

Reminder: Better Evaluation in Built-in Racket

(delay exp) returns an object called a promise, without

evaluating exp

(force promise) evaluates the promised expression and

returns its value
• If the promise's exp has not been evaluated yet, it is evaluated and

cached; otherwise, the cached value is returned

• A promised expression is evaluated only once, no matter how many

times it is forced!

Promises in action!

> (define prime-lst (primes))

> prime-lst

'(2 . #<promise>)

> (force (cdr prime-lst))

'(3 . #<promise>)

> (force (cdr (force (cdr prime-lst))))

'(5 . #<promise>)

> prime-lst

'(2 . #<promise!(3 . #<promise!(5 . #<promise>)>)>)

This worked, but it was

a bit annoying if we

wanted to process the

whole list!

Available Stream Procedures
These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp ...)

(stream? v)

(stream-cons head tail)

(stream-first s)

(stream-rest s)

(stream-empty? s)

empty-stream

(stream-ref s idx)

And several others

Constructing an Infinite Length Stream

Write a procedure which
• returns a stream constructed via stream-cons

• where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)

(stream-cons n (integers-from (add1 n))))

(define positive-integers (integers-from 0))

Handy testing function for streams

(define (sp s)

(stream->list (stream-take s 10)))

This returns a list of the first 10 elements in the stream which DrRacket will print

out as normal

Write a Racket function (collatz n) that returns a stream containing

the numbers of the Collatz sequence starting with x1 = n

The rest of the sequence is defined by

xi+1 = xi / 2 if xi is even

xi+1 = 3xi + 1 if xi is odd

Examples sequences with different starting values:
1 4 2 1 4 2 1 4 …

3 10 5 16 8 4 2 1 …

10 5 16 8 4 2 1 4 …

-1 -2 -1 -2 -1 -2 -1 -2 …

A. Vote for anything when done

Building streams from streams

How to write a procedure that adds two streams together
• Use stream-cons to construct the new stream

• Use stream-first on each stream to get the heads

• Recurse on the tails via stream-rest

(define (stream-add s t)

(cond [(stream-empty? s) empty-stream]

[(stream-empty? t) empty-stream]

[else

(stream-cons (+ (stream-first s)

(stream-first t))

(stream-add (stream-rest s)

(stream-rest t)))]))

Fun example with laziness

Consider the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, … where we start with 0

and 1 and then to get the next element in the sequence we add the current

element and the previous element

If fibs is that sequence as a stream then consider what happens if we add the

elements of fibs to the elements of (stream-rest fibs)

0 1 1 2 3 5 … fibs

1 1 2 3 5 8 … (stream-rest fibs)

1 2 3 5 8 13 …

We get a new stream that’s just (stream-rest (stream-rest fibs))

Fun example with laziness continued

What happens if we define fibs to be the stream starting with 0 and 1

and then followed by adding fibs and (stream-rest fibs)?
(define fibs

(stream-cons 0

(stream-cons 1

(stream-add fibs (stream-rest fibs)))))

A. We get the Fibonacci sequence

B. We get an error before running because fibs is used before it is defined

C. We get an error at run time because we’re accessing elements of fibs

before they’re defined

Higher-order stream functions

Like their list counterparts, we can write higher-order functions that operate on

streams

(stream-map f s) — Returns a stream that contains f applied to each

element of s

(stream-filter f s) — Returns a stream that contains the elements of s

for which f does not return false

(stream-fold f init s) — Folds (f acc elem) over s starting with

init as the initial accumulator value

If we have a stream of numbers s, how can we construct a new stream

whose elements are twice the value of the elements in s?

A.(list->stream

(map (λ (x) (* x 2) (stream->list s)))

B.(stream-map (λ (x acc)

(stream-cons (* x 2) acc))

s)

C.(stream-map (λ (x) (* x 2)) s)

D.(map (λ (x) (stream (* x 2)) s)

1

6

Implement the (stream-map f s) function. Make sure it works for

both finite-length streams and infinite-length streams

Hint: Think about how you’d implement the map function for lists

using basic recursion with empty?, empty, cons, first, and rest

A. Vote for anything when done

Stream Procedures

Implement (stream-filter f s) which returns a stream

containing the elements of s (in order) such that applying f to

the element returns anything other than #f

Bonus: You can prevent your implementation from evaluating f

on elements of the stream at the time you call stream-filter by
wrapping your implementation in a call to stream-lazy

Compare (stream-filter (λ (x) #f) (collatz 1))

when stream-filter is not implemented with stream-lazy

to when it is

Write some more stream procedures

(stream-double s)

Returns a stream containing each element of s twice
(stream-double (stream 1 2 3)) =>

(stream 1 1 2 2 3 3)

(stream-interleave s t)

Returns a stream that interleaves elements of s and t
(stream-interleave (stream 1 2 3) '(a b c d))

=> (stream 1 'a 2 'b 3 'c 'd)

	Slide 1: CSCI 275: Programming Abstractions
	Slide 6: Reminder: Better Evaluation in Built-in Racket
	Slide 7: Promises in action!
	Slide 8: Available Stream Procedures
	Slide 9: Constructing an Infinite Length Stream
	Slide 10: Handy testing function for streams
	Slide 11: Write a Racket function (collatz n) that returns a stream containing the numbers of the Collatz sequence starting with x1 = n The rest of the sequence is defined by xi+1 = xi / 2 if xi is even xi+1 = 3xi + 1 if xi is odd Examples sequences wit
	Slide 12: Building streams from streams
	Slide 13: Fun example with laziness
	Slide 14: Fun example with laziness continued What happens if we define fibs to be the stream starting with 0 and 1 and then followed by adding fibs and (stream-rest fibs)? (define fibs (stream-cons 0 (stream-cons 1 (stream-add fibs (stream-r
	Slide 15: Higher-order stream functions
	Slide 16: If we have a stream of numbers s, how can we construct a new stream whose elements are twice the value of the elements in s?
	Slide 17: Implement the (stream-map f s) function. Make sure it works for both finite-length streams and infinite-length streams Hint: Think about how you’d implement the map function for lists using basic recursion with empty?, empty, cons, first, and r
	Slide 18: Stream Procedures
	Slide 19: Write some more stream procedures

