
CSCI 275:
Programming Abstractions
Lecture 20: MiniScheme D, Conditionals

Spring 2025

Stephen Checkoway

Slides from Molly Q Feldman

Some General Purpose Notes

Racket Style

- Never use multiple conds, when you can just use one!

- Nested defines? letrec instead.

- When building something recursive, base cases first in the cond

- else case should almost always be recursive call

- Logic choices should be distinct in a cond

Testing

- Generally, always good to test the empty list case for anything

that operates over a list

- MiniScheme testing is going to be intense!

- Lots of tests, best way to check that it works

- Learning how to write a good test suite: part of the class

- Think about “code coverage”

- Every branch of a cond should have a related test

Summary Problems

- Available!

- Your final is based strongly on these problems

- In your interest to get feedback early

- Style, how you solve the problems, and test the solutions are

part of your grade on the Final Project

Back to MiniScheme

What have we discussed already? (A-C)

EXP → number parse into lit-exp

| symbol parse into var-exp

| (EXP EXP*) parse into app-exp

• Parsing and evaluating numbers

• Parsing and evaluating symbols

• Parsing and application (primitive functions)

• What an environment does

MiniScheme D: Conditionals

Heads Up! MiniScheme Booleans & If

We’ll treat anything other than False and 0 as being true for

conditionals.

Booleans in MiniScheme are different than in

Scheme/Racket!

Booleans in MiniScheme are True and False

Like our primitive procedures, you'll need to add symbols True and

False to init-env

Bind them to 'True and 'False

What value does MiniScheme return for this expression
assuming that x is bound to 23 and y is bound to 42?

(if (- y x)

25

37)

A. 25

B. 37

C. It's an error because (- y x) is a number

1

4

Our first special form: if

EXP → number parse into lit-exp

| symbol parse into var-exp

| (if EXP EXP EXP) parse into ite-exp

| (EXP EXP*) parse into app-exp

We need a new data type for the if-then-else expression: ite-exp

ite-exp

ite-exp?

ite-exp-cond

ite-exp-then

ite-exp-else

Parsing special forms
if, let, lambda, etc.

(define (parse input)

(cond [(number? input) (lit-exp input)]

[(symbol? input) (var-exp input)]

[(list? input)

(cond [(empty? input) (error ...)]

[(eq? (first input) 'if) ...]

[(eq? (first input) 'let) ...]

[(eq? (first input) 'lambda) ...]

...

[else (app-exp ...)])]

[else (error 'parse "Invalid syntax ~s" input)]))

Make sure that

input is the right

length for each

special form!

Parsing if-then-else expressions

If-then-else expressions are recursive

E.g., EXP → (if EXP EXP EXP)

When parsing an if-then-else expression,
you want to parse the sub expressions using parse

The input to parse will look like '(if (lt? x 1) (+ y 100)

z)

The condition is (second input)

The then-branch is (third input)

The else-branch is (fourth input)

Evaluating ite-exp

Parse tree is recursive: (parse '(if x 10 20))

(ite-exp (var-exp 'x) (lit-exp 10) (lit-exp 20))

When evaluating, you should call eval-exp recursively

First, call it on the conditional expression

If the condition evaluates to False or 0,

evaluate the last expression and return its result

Otherwise,

evaluate the middle expression and return its result

What happens if you implement eval-exp for an ite-exp by

calling eval-exp on all three parts of the expression before

deciding which one to return?
(let ([co (eval-exp (ite-exp-cond tree) e)]

[th (eval-exp (ite-exp-then tree) e)]

[el (eval-exp (ite-exp-else tree) e)])

(if co th el))

A. The code works perfectly

B. The code works correctly, but inefficiently on some inputs (which?)

C. The code will produce the wrong result on some inputs (which?)

D. The code will produce the wrong results on all inputs

19

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Some General Purpose Notes
	Slide 3: Racket Style
	Slide 4: Testing
	Slide 5: Summary Problems
	Slide 6: Back to MiniScheme
	Slide 11: What have we discussed already? (A-C)
	Slide 12: MiniScheme D: Conditionals
	Slide 13: Heads Up! MiniScheme Booleans & If
	Slide 14: What value does MiniScheme return for this expression assuming that x is bound to 23 and y is bound to 42? (if (- y x) 25 37)
	Slide 15: Our first special form: if
	Slide 16: Parsing special forms
	Slide 17: Parsing if-then-else expressions
	Slide 18: Evaluating ite-exp
	Slide 19: What happens if you implement eval-exp for an ite-exp by calling eval-exp on all three parts of the expression before deciding which one to return? (let ([co (eval-exp (ite-exp-cond tree) e)] [th (eval-exp (ite-exp-then tree) e)] [el

