
CSCI 275:
Programming Abstractions
Lectures 18–19: MiniScheme B (conclusion) and C Start

Spring 2025

Stephen Checkoway

Slides from Molly Q Feldman

Functional Language of the Week: Scala

2

• Developed at EPFL

• Academic project that has turned into mainstream language

• 29th on the top 50 languages list

Scala is mind bending as it is all of the following things:

• Compatible with Java

• It runs on the JVM, Scala programs act/seem like Java programs

• OOP: every value is an object

• Subclassing, etc.

• Function: every function is a value

• Currying is supported

• Higher order functions

https://docs.scala-lang.org/tour/tour-of-scala.html

https://docs.scala-lang.org/tour/tour-of-scala.html

3

List<Person> people;

List<Person> minors = new ArrayList<Person>(people.size());

List<Person> adults = new ArrayList<Person>(people.size());

for (Person person : people) {

if (person.getAge() < 18)

minors.add(person);

else

adults.add(person);

}

val people: Array[Person]

// Partition `people` into two arrays `minors` and `adults`.

// Use the anonymous function `(_.age < 18)` as a predicate for

partitioning.

val (minors, adults) = people.partition (_.age < 18)

Questions? Concerns?

Today’s Goals

• Overview of making MiniScheme compute!
• Getting to parsing and evaluating (+ 1 2) into 3

MiniScheme Design

MiniScheme Design

(read)

MiniScheme

expression as a string

(parse)

Structured

list

(eval-exp)

Expression tree

Environment

Value

Implementation Information

• We are implementing MiniScheme, a subset of Scheme

• We are using Racket to write the rules and interpret the

results

Environment: env.rkt

• Contains the environment data type with constructor env

• Contains other procedures to recognize and access the symbols,

values, and previous environment

• Your task is to implement
(env-lookup environment symbol)

Parser: parse.rkt

• Contains data types for let expressions, lambda expressions, if-

then-else expressions, procedure-application expressions and so

on

• Builds a parse tree out of these data types from an expression

> (parse '(let ([f (lambda (x) (+ x 1))]) (f 5)))

(let-exp '(f) (list (lam-exp '(x) ...))

(app-exp ...))

• You get to implement all of this, bit by bit

Interpreter: interp.rkt

• Contains data types for closures and primitive procedures (i.e.,

built-in procedures)

• Takes an expression tree and an environment and returns a

value

> (eval-exp exp-tree environment)

• You get to implement all of this, bit by bit, at the same time

you're implementing the parser

Project Structure

Provide the definitions
(provide proc1 proc2 data1 data2 ...)

We want parse.rkt to be just one module in our program so

make sure to provide the procedures

• (provide parse)
• Also the procedures for creating and manipulating the lit-exp

by using (provide (struct-out lit-exp))

Read-eval-print loop

Having to call parse and then eval-exp over and over is a hassle

It'd be better if we could run a read-eval-print loop that would read in

an expression from the user, parse it, and evaluate it in an

environment

minischeme.rkt will do this but you must (provide …)

• In parse.rkt, a (parse input) procedure

• In interp.rkt

• An (eval-exp tree environment) procedure

• An initial environment init-env

Something like
(define init-env (env '(x y) '(23 42) empty-env))

MiniScheme Design

(read)

MiniScheme

expression as a string

(parse) (eval-exp)

init-env

Value

minischeme.rkt

Running the read-eval-print loop

Open minischeme.rkt in DrRacket, click Run

Enter expressions in the box (only numbers are supported right

now)

Click the eof button to exit MiniScheme (previously you could

also type exit)

Notice how

the prompts

differ!

Wrapping Up Environments

When to extend an environment?

There are only two places where an environment is extended in

MiniScheme:

A. Let expressions

A. Procedure calls

A. Extending Environments: Let

Consider
(let ([x (+ 3 4)]

[y 5]

[z (foo 8)])

body)

We have three symbols x, y, and z and three values, 7, 5, and

whatever the result of (foo 8) is, let's say it's 12

If E is the environment prior to the let expression, then the body

should be evaluated in the environment
E[x ↦ 7, y ↦ 5, z ↦ 12]

B. Extending environments: procedure calls

We extend the environment when we pass expressions to

arguments during procedure calls

(lambda (x) (first x)) called on (list 1 2 3)

will extend the environment by mapping x to ‘(1 2 3)

x ‘(1 2 3)

Environment of the call

Closures store their environments!

The expression of (lambda parameters body…) evaluates

to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one

expression)

- The environment (the mapping of identifiers to values) at the

time the lambda expression is evaluated
25

Environments with closures versus calls

(define A 10)

(define add-a

(lambda (x)

(+ x A)))

Calling the closure extends the

closure's environment with its

parameters bound to the arguments

(add-a 20)

When called, the closure's body is

evaluated with this new environment
26

A 10

Environment of the closure

A 10

x 20

Environment of the call

Keep it around! Part of

what the closure

contains!

Previous Slide, In General

The first expression below is a procedure call
(exp0 exp1 … expn)

exp0 should evaluate to a closure with three parts

• its parameter list

• its body

• the environment in which it was created, i.e., the environment
at the time the (lambda …) that created the closure was

evaluated

exp1 … expn are the arguments

The closure's environment also needs to be extended with the

parameters bound to the arguments!

For example, imagine the parameter list was (x y z)

and the arguments evaluated to 2, 8, and '(1 2)

If E is the closure's environment, then the closure's body

should be evaluated with the environment
E[x ↦ 2, y ↦ 8, z ↦ '(1 2)]

Another Example

Extending environments

In both cases (let & procedure calls), we have

• A list of symbols

• A list of values

• A previous environment we're extending

We are going to want to make a data

type representing this environment

This is Part 1 of HW5!

First Step: Lookup Only, Extension Later!

(env-lookup environment symbol)

Looking up x in an environment has two cases:

(1) If the environment is empty, then we know x isn't bound there so

it's an error

(2) Otherwise, we look in the list of symbols of an extended

environment
• If the symbol x appears in the list, then great, we have the value

• If the symbol x doesn't appear, then we lookup x in the previous

environment

Part 1 of Homework 5: write env-lookup

Back to Evaluating Symbols!

Assume that x is bound to 10 and y to 25 in an environment called

init-env.

What do we want (eval-exp

(parse ‘x) init-env) to return?
A.10

B.‘x

C.25

D.Error

E.Something else

33

(define (eval-exp tree e)

(cond [(lit-exp? tree) (lit-exp-num tree)]

HANDLE SYMBOL HERE

[else (error ...)]))

(define (parse input)

(cond [(number? input) (lit-exp input)]

HANDLE SYMBOL HERE

[else (raise-user-error ...)]))

How do we edit parse and eval-exp to handle symbols?
Work on adding a case to each cond in your small groups.
Vote A when done.

Parsing symbols

(define (parse input)

(cond [(number? input) (lit-exp input)]

[(symbol? input) (var-exp input)]

[else (raise-user-error

'parse

"Invalid syntax ~s" input)]))

When I run (parse 'foo), I get (var-exp 'foo)

Interpreting symbols

(define (eval-exp tree e)

(cond [(lit-exp? tree) (lit-exp-num tree)]

[(var-exp? tree)

(env-lookup e (var-exp-symbol tree))]

[else (error ...)]))

You'll need a working env-lookup !

> (env-lookup init-env 'x)

23

> (eval-exp (var-exp 'x) init-env)

23

MiniScheme C Overview

We have thought about this part of
MiniScheme thus far

Grammar
EXP → number parse into lit-exp

| symbol parse into var-exp

Let's add arithmetic and some list procedures

Let's add +, -, *, /, car, cdr, cons, etc.

This is the first “complex” part

• It contains some things that make more sense later,
once we add lambda expressions

Scheme is all about lists

So far, we have only dealt with a number or a symbol as input

If the input is a list, then the kind of expression it represents depends on

the first element. For instance:
• If the first element is lambda, it's a lambda expression

• If the first element is let, it's a let expression

• If the first element is if, it's an if-then-else expression

Procedure applications don't have keywords, so any nonempty list for

which the first element is not one of our supported keywords is an

application

(foo x 8 y) is an application with procedure foo and arguments x, 8,

and y

Which grammar rule supports procedure calls like
(+ 10 15) and (car lst)?

EXP → number parse into lit-exp

| symbol parse into var-exp

| ??? A.(PROC ARGS)

B.(PROC ARG*)

C.(symbol EXP*)

D.(EXP*)

E.(EXP EXP*)
46

Challenge: many ways to call procedures
(+ 2 3)

((lambda (x y) (+ x y)) 2 3)

(let ([f +]) (f 2 3))

The parser can't identify all primitive procedures like + because symbols
like f may be bound to primitive procedures

Important: the parser cannot tell because it does not have access to

the environment

All that the parser can do is recognize a procedure application and

parse (1) the procedure and (2) the arguments

Procedure applications
MiniScheme C

EXP → number parse into lit-exp

| symbol parse into var-exp

| (EXP EXP*) parse into app-exp

An app-exp is a new data type that stores

• The parse tree for a procedure

• A list of parse trees for the arguments

Parsing, Recursively!
Expressions are recursive: EXP → (EXP EXP*)

When parsing an application expression, you want to parse the sub

expressions using parse

(define (parse input)

(cond [(number? input) (lit-exp input)]

[(symbol? input) (var-exp input)]

[(list? input)

(cond [(empty? input) (raise-user-error ...)]

[else (app-exp (parse (first input))

(...))])]

[else (raise-user-error ...)]))

What is the result of (parse '(foo x y z))?

A.(app-exp 'foo '(x y z))

B.(app-exp (var-exp 'foo) '(x y z))

C.(app-exp (var-exp 'foo)

(list (var-exp 'x) (var-exp 'y) (var-exp 'z)))

D.(app-exp 'foo

(list (var-exp 'x) (var-exp 'y) (var-exp 'z)))

E. It's an error because the variables foo, x, y, and z aren't defined

50

What is the result of (parse '(foo (add1 x))?

A.(app-exp (var-exp 'foo)

(app-exp (var-exp 'add1) (var-exp 'x)))

B.(app-exp (var-exp 'foo)

(list (app-exp (var-exp 'add1) (var-exp 'x))))

C.(app-exp (var-exp 'foo)

(list (app-exp (var-exp 'add1)

(list (var-exp 'x)))))

D. It's an error
51

Evaluating an app-exp

1. Evaluate the procedure part

2. Evaluate each of the arguments

3. If the procedure part evaluates to a primitive procedure, call a Racket

procedure you'll write that will perform the operation on the arguments
- E.g., if the primitive procedure is *, then you'll want to call * on the arguments

Right now, primitive procedures are going to be the only supported

procedures

Part 1 is the tricky part: what should the result of evaluating the

procedure part be?

Restated: Evaluating an app-exp

EXP → number parse into lit-exp

| symbol parse into var-exp

| (EXP EXP*) parse into app-exp

STEP 1: Evaluate the procedure

STEP 2: Evaluate the arguments

STEP 3: Actually apply the procedure

Evaluating the procedure part of an app-exp

Consider the input '(+ 2 3 4)

The procedure part is '+ which will be parsed as (var-exp '+)

Variable reference expressions are evaluated by looking the

symbol up in the current environment

Therefore, we need our initial environment to contain a binding for
the symbol '+ (and friends) so we know what it “is”

Data Type for Primitive Procedures!

We can create a new data type prim-proc

We're going create a bunch of these
(prim-proc '+)

(prim-proc '-)

(prim-proc 'car)

(prim-proc 'cdr)

(prim-proc 'null?)

...

prim-proc

A prim-proc is a value that will be returned by eval-exp, just

like numbers are in MiniScheme now

A (prim-proc 'car) is to the MiniScheme interpreter exactly

the same thing #<procedure:car> is to DrRacket

Since prim-proc is only used to interpret expressions, where

should this data type be defined?

Binding variables to prim-proc

In DrRacket, + is bound to #<procedure:+>

In MiniScheme, + needs to be bound to (prim-proc '+)

in our initial environment, init-env

And similarly for -, *, /, car, cdr, null? etc.

Adding primitives to our initial environment

(define primitive-operators

'(+ - * /))

(define prim-env

(env primitive-operators

(map prim-proc primitive-operators)

empty-env))

(define init-env

(env '(x y) '(23 42) prim-env))

Evaluating an app-exp

EXP → number parse into lit-exp

| symbol parse into var-exp

| (EXP EXP*) parse into app-exp

STEP 1: Evaluate the procedure [DONE!]

STEP 2: Evaluate the arguments

STEP 3: Actually apply the procedure

In parse, we could simply map parse over the arguments to get a list

of trees corresponding to our arguments.

We cannot simply use (map eval-exp (app-exp-args tree))

to evaluate them, why?

eval-exp requires an environment! so, we need to make

sure we include the environment as part of the map.

STEP 2: Evaluating the arguments

In parse, we could simply map parse over the arguments to get a list

of trees corresponding to our arguments

We cannot simply use (map eval-exp (app-exp-args tree))

to evaluate them, why?

eval-exp requires an environment! so, we need to make

sure we include the environment as part of the map.

STEP 2: Evaluating the arguments

STEP 3: Applying the procedure to the
arguments

(define (eval-exp …)

…

[(app-exp? tree)

(let ([proc (eval-exp (app-exp-proc tree) e)]

[args (map … (app-exp-args tree)])

(apply-proc proc args))]

…)

1. Arguments are an evaluated procedure and a list of evaluated

arguments

2. Checks whether procedure is a primitive?

If so, it will call apply-primitive-op

If not, it's an error for now; later, we'll handle this case

(define (apply-proc proc args)

(cond [(prim-proc? proc)

(apply-primitive-op (prim-proc-symbol proc) args)]

[else (error 'apply-proc "Bad proc: ~s" proc)]))

Consider the MiniScheme expression (+ x 3).

What is the abstract syntax tree that results from parsing that

expression?

A.(app-exp (var-exp ‘+)

(list (var-exp ‘x) (lit-exp 3)))

B.(app-exp (prim-proc ‘+)

(list (var-exp ‘x) (lit-exp 3)))

C.(app-exp (var-exp ‘+)

‘(x 3))

D.(app-exp (prim-proc ‘+)

‘(x 3))

When eval-exp evaluates
(app-exp (var-exp ‘+) (list (var-exp ‘x) (lit-exp 3)))

it evaluates the procedure and the list of arguments
(let ([proc (eval-exp (app-exp-proc tree) e)]

[args (map … (app-exp-args tree)])

what are proc and args, assuming x is bound to 23 in the current

environment?

A.#<procedure:+>, ‘(23 3)

B.(prim-proc ‘+), ‘(23 3)

C.‘+, ‘(23 3)

D.(prim-proc ‘+), ‘(x 3)

E.‘+, ‘(x 3)

When eval-exp evaluates
(app-exp (var-exp ‘+) (list (var-exp ‘x) (lit-exp 3)))

it calls
(apply-proc (prim-proc ‘+) ‘(23 3))

which calls
(apply-primitive-op (prim-proc-symbol proc) args)

What is wrong with this implementation? (Group discussion)
(define (apply-primitive-op op args)

(cond [(eq? op ‘+) (apply + args)]

[(eq? op ‘-) (apply – args)]

...

[else (error ...)]))

apply-primitive-op

(apply-primitive-op op args)

op is the name of the primitive, e.g., ‘+ or ‘car

args are the evaluated values

Apply-primitive-op needs to check that the arguments are the appropriate types
(e.g., + only works if all of the arguments are numbers) and there are an
appropriate number of them

If the arguments are wrong, raise-user-error should be used to raise an
error

Recap: evaluating an app-exp
eval-exp

Determines that the passed in expression is an app-exp

Evaluates the procedure in the app-exp in the environment to get a value

Evaluates each of the arguments in the app-exp to get a list of values

Calls (apply-proc proc args)

apply-proc

If the passed in proc is a prim-proc, then call
(apply-primitive-op (prim-proc-symbol proc) args)

Otherwise, error

apply-primitive-op

Based on the passed in symbol, checks the arguments and then applies
the corresponding Racket function to the args and returns the result

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Functional Language of the Week: Scala
	Slide 3
	Slide 6: Questions? Concerns?
	Slide 7: Today’s Goals
	Slide 9: MiniScheme Design
	Slide 10: MiniScheme Design
	Slide 11: Implementation Information
	Slide 12: Environment: env.rkt
	Slide 13: Parser: parse.rkt
	Slide 14: Interpreter: interp.rkt
	Slide 16: Project Structure
	Slide 17: Provide the definitions
	Slide 18: Read-eval-print loop
	Slide 19: MiniScheme Design
	Slide 20: Running the read-eval-print loop
	Slide 21: Wrapping Up Environments
	Slide 22: When to extend an environment?
	Slide 23: A. Extending Environments: Let
	Slide 24: B. Extending environments: procedure calls
	Slide 25: Closures store their environments!
	Slide 26: Environments with closures versus calls
	Slide 27: Previous Slide, In General
	Slide 28
	Slide 29: Extending environments
	Slide 30: First Step: Lookup Only, Extension Later!
	Slide 31: Back to Evaluating Symbols!
	Slide 33: Assume that x is bound to 10 and y to 25 in an environment called init-env. What do we want (eval-exp (parse ‘x) init-env) to return?
	Slide 34
	Slide 35: Parsing symbols
	Slide 36: Interpreting symbols
	Slide 37: MiniScheme C Overview
	Slide 38: We have thought about this part of MiniScheme thus far
	Slide 44: Let's add arithmetic and some list procedures
	Slide 45: Scheme is all about lists
	Slide 46: Which grammar rule supports procedure calls like (+ 10 15) and (car lst)? EXP → number parse into lit-exp | symbol parse into var-exp | ???
	Slide 47: Challenge: many ways to call procedures
	Slide 48: Procedure applications
	Slide 49: Parsing, Recursively!
	Slide 50: What is the result of (parse '(foo x y z))?
	Slide 51: What is the result of (parse '(foo (add1 x))?
	Slide 52: Evaluating an app-exp
	Slide 53: Restated: Evaluating an app-exp
	Slide 54: Evaluating the procedure part of an app-exp
	Slide 55: Data Type for Primitive Procedures!
	Slide 56: prim-proc
	Slide 57: Binding variables to prim-proc
	Slide 58: Adding primitives to our initial environment
	Slide 59: Evaluating an app-exp
	Slide 60: STEP 2: Evaluating the arguments
	Slide 61: STEP 2: Evaluating the arguments
	Slide 62: STEP 3: Applying the procedure to the arguments
	Slide 63
	Slide 64: Consider the MiniScheme expression (+ x 3). What is the abstract syntax tree that results from parsing that expression?
	Slide 65: When eval-exp evaluates (app-exp (var-exp ‘+) (list (var-exp ‘x) (lit-exp 3))) it evaluates the procedure and the list of arguments (let ([proc (eval-exp (app-exp-proc tree) e)] [args (map … (app-exp-args tree)]) what are proc and args,
	Slide 66: When eval-exp evaluates (app-exp (var-exp ‘+) (list (var-exp ‘x) (lit-exp 3))) it calls (apply-proc (prim-proc ‘+) ‘(23 3)) which calls (apply-primitive-op (prim-proc-symbol proc) args) What is wrong with this implementation? (Group discussion)
	Slide 67: apply-primitive-op
	Slide 69: Recap: evaluating an app-exp

