
CSCI 275:
Programming Abstractions
Lecture 14: Types & Computation

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Questions? Concerns?

Functional Language of the Week: Haskell
• Haskell was first released in 1990, started in 1987

• Language developed “by committee”

“The committee's primary goal was to design a language that satisfied

these constraints:

1. It should be suitable for teaching, research, and applications,

including building large systems.

2. It should be completely described via the publication of a formal

syntax and semantics.

3. It should be freely available. Anyone should be permitted to

implement the language and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming

languages.”

https://www.haskell.org/onlinereport/preface-jfp.html

https://www.haskell.org/onlinereport/preface-jfp.html

Functional Language of the Week: Haskell

4

• Seen as a test bed for a lot of advanced PL features

• The GHC (Glasgow Haskell Compiler) specifically has made

a lot of innovations in compilers

• Its logo is a lambda! Described as a “an advanced, purely

functional programming language”

• Haskell operates with a lazy semantics (sometimes referred to

as call-by-need semantics) – this is different than what Racket

and most languages use, stay tuned!

Functional Language of the Week: Haskell

If you’re interested, Simon Peyton Jones (main lead of the Haskell compiler) hour long talk on Haskell history:

https://www.youtube.com/watch?v=re96UgMk6GQ

Implementations from https://en.wikipedia.org/wiki/Haskell

https://www.youtube.com/watch?v=re96UgMk6GQ
https://en.wikipedia.org/wiki/Haskell

Types Continued

Which of the calls below will fail the type checker?

E. None of the above

Type Checking in Racket

Notice even though D throws

the error, we do not get any

output from the previous three

calls

Typed Racket includes a

Type Checking Pass before

evaluation!

Typed Racket

• Basic types like Number

• Function types like (: negate (-> Integer Integer))

• Type constructors like (Listof Boolean)

• Union types like (U False (Listof Number))

Creating your own types

Writing out type annotations is something we do a lot

AND

We probably want to be able to make new types for new data, etc.

(define-type N3N (-> Number Number Number))

(define-type FalseNum (U False (Listof Number))

Reminder: Tree definition
; Definition of tree datatype
(struct tree (value children) #:transparent)

; An empty tree is represented by null
(define empty-tree null)

; (empty-tree? empty-tree) returns #t

(define empty-tree? null?)

; Convenience constructor

; (make-tree v c1 c2 ... cn) is equivalent to

; (tree v (list c1 c2 ... cn))
(define (make-tree value . children)

(tree value children)) Reminder: variadic function!

How do we create a typed Number tree?

Reminder, the untyped version:
(struct tree (value children))

A. (struct tree ([value: Number]

[children: (Listof tree)]))

B.(struct tree ([value: Number]

[children: (Listof Number)]))

C.(struct tree ([value: Number] [children: Number]))

D.(struct tree ([value children] : Number))

E. Something else

Reminder of our leaf checker below. What type is it?

(define (leaf? t)

(cond [(empty-tree? t) #f]

[else (empty? (tree-children t))]))

A.(: leaf? (-> tree tree))

B.(: leaf? (-> Boolean tree))

C.(: leaf (-> tree Boolean))

D.(: leaf (-> tree False))

E. Something else

Types for Variadic Functions

Reminder: variadic

function!

Specifies the type of the

remaining arguments

Now we can enforce numeric trees!

Recursive Types

Struct typing is a special case of Recursive Types

We can define the tree type by saying that the children is

of type “list of trees”

However, we cannot do something like

(define-type forest (U Number forest))

This says a forest is either a Number or a forest…

Types, Leveled Up

Assume we write 2 variants of the member procedure: one for

Numbers, one for Strings. They have the type signatures:

(: nmem (-> Number (Listof Number)

(U False (Listof Number))))

(: smem (-> String (Listof String)

(U False (Listof String))))

Which of the following is true?

A.nmem and smem probably use the type of the arguments in their

implementations
B.nmem and smem probably do not use the type of the arguments in

their implementations
C.nmem and smem’s type signatures have the same general structure

D. More than one of the above (which?)

E. None of the above

We want a type signature for a general
member!
(: nmem (-> Number (Listof Number)

(U False (Listof Number))))

(: smem (-> String (Listof String)

(U False (Listof String))))

(: mem (-> X (Listof X)

(U False (Listof X))))

Parametric Polymorphism

Typed Racket (and many functional languages!) support

parametric polymorphism

This allows us to write code without knowing the actual type of

the arguments

Polymorph – “Many forms”

parametric!

Thanks to TAPL by Pierce and Steve Chong https://groups.seas.harvard.edu/courses/cs152/2015sp/lectures/lec14-polymorphism.pdf

Parametric Polymorphism in Typed Racket

Typed Racket introduces the All type parameterization

All takes a list of type variables and a body type – the type

variable can be free in the body of the type

So for a general length method, we would get the type

(: length (All (A) (-> (Listof A) Integer)))

If this is the polymorphic type for length:
(: length (All (A) (-> (Listof A) Integer)))

what is it for our generic mem member procedure?

A. (: mem (-> A (Listof A)

(U False (Listof A))))

B. (: mem (-> Number (Listof A)

(U False (Listof A))))

C. (: mem (All (A) (-> A (Listof A)

(U False (Listof A)))))

D. Something else

Other Types of Polymorphism

You likely have encountered other kinds of polymorphism!

Subtype Polymorphism: if you define a procedure for a

Number, you can use it for a Float or an Integer as well

(“subsumption rule”)

Ad-hoc Polymorphism: you can use the + operator on Strings

and on Integers. You can also overload + for your own class!

(this looks like polymorphism, but is many implementations)

Thanks to TAPL by Pierce and Steve Chong https://groups.seas.harvard.edu/courses/cs152/2015sp/lectures/lec14-polymorphism.pdf

Always good to use an adjective

when you’re discussing

polymorphism for this reason!

Fun Facts

Java Generics are an implementation of parametric

polymorphism using wildcards

This is a new feature in Java, relatively speaking: it was only

added in 2004 and is based on decades of research by the PL

community on generics in Java

The classic model for parametric polymorphism is called System

F (this was developed in the 1970s)

Thanks to TAPL by Pierce and Steve Chong https://groups.seas.harvard.edu/courses/cs152/2015sp/lectures/lec14-polymorphism.pdf

Type-Related Algorithms

• Types give us additional functionality and the ability to do

better error detection

• We would need some additional tools/time to go into

these ideas in proper detail

Type Checking Type Inference

Are these types consistent? Can I guess types in a consistent way?

Facts about Type-Related Algorithms

• Robin Milner won the Turing Award in 1991 partially for building “ML,

the first language to include polymorphic type inference together with

a type-safe exception-handling mechanism”

• The most well-known type inference algorithm is called Hindley-

Milner type inference

• Type inference in the full parametric polymorphism environment we

talked about is undecidable

Type Inference Limits in Typed Racket

Typed Racket in it’s “Caveats and Limitations” notes “Typed

Racket’s local type inference algorithm is currently not able to

infer types for polymorphic functions that are used on higher-

order arguments that are themselves polymorphic.”

Example that doesn’t type check:

(map cons '(a b c d) '(1 2 3 4))

map is polymorphic and cons is too - too much polymorphism!

https://docs.racket-lang.org/ts-guide/caveats.html

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 3: Functional Language of the Week: Haskell
	Slide 4: Functional Language of the Week: Haskell
	Slide 5: Functional Language of the Week: Haskell
	Slide 6: Types Continued
	Slide 7: Which of the calls below will fail the type checker?
	Slide 8: Type Checking in Racket
	Slide 9: Typed Racket
	Slide 10: Creating your own types
	Slide 11: Reminder: Tree definition
	Slide 12: How do we create a typed Number tree? Reminder, the untyped version: (struct tree (value children))
	Slide 13: Reminder of our leaf checker below. What type is it? (define (leaf? t) (cond [(empty-tree? t) #f] [else (empty? (tree-children t))]))
	Slide 14: Types for Variadic Functions
	Slide 15: Now we can enforce numeric trees!
	Slide 16: Recursive Types
	Slide 17: Types, Leveled Up
	Slide 18: Assume we write 2 variants of the member procedure: one for Numbers, one for Strings. They have the type signatures: (: nmem (-> Number (Listof Number) (U False (Listof Number)))) (: smem (-> String (Listof String) (U False (L
	Slide 19: We want a type signature for a general member!
	Slide 20: Parametric Polymorphism
	Slide 21: Parametric Polymorphism in Typed Racket
	Slide 22: If this is the polymorphic type for length: (: length (All (A) (-> (Listof A) Integer))) what is it for our generic mem member procedure?
	Slide 24: Other Types of Polymorphism
	Slide 25: Fun Facts
	Slide 27: Type-Related Algorithms
	Slide 28: Facts about Type-Related Algorithms
	Slide 29: Type Inference Limits in Typed Racket

