CSCI 275:
Programming Abstractions

Lecture 13: Types
Spring 2025

Stephen Checkoway 2 s
Slides from Molly Q Feldman

Announcements

Take-home exam next Monday
* No lecture on Monday

* |'ll be In my office during the exam time to answer questions

* Review on Friday

HW 4 due Friday

Reminder: Structs

Reminder: Struct Data Types

(struct name (field-a field-b) ..)

Racket has a very general mechanism for creating data structures and
thelr associlated procedures &

To create our point data type, we can instead use

(struct point (x v))

This will create a new type named point and the following procedures:
(point x vy) produces a new point with the given coordinates

(point? ob7j) returns #t if obj IS a point
(polint-x p) returns the x field
(point-vy p) returns the vy field

(provide (struct-out point)) will provide the definitions of the point

Example point (struct point (x y))

(define p (point 3 4))

(po1nt? p) ; returns #t

(point? 10) ; returns
(point-x p) ,; returns 3

(poilnt-y p) ; returns 4

o ; DrRacket prints this as #<point>

(point—-x '(a b c¢)) ; raises an error

One more addition: Make the struct transparent

(struct point (x V) :transparent)

(point 3 4) => (point 3 4) rather than #<point>

(equal? (point 3 4) (point 3 4)) => #t

:transparent IS a keyword argument

Why? Without it... [IEELCRY R]I

(define (thing p)

(cond [(negative? (polnt-x p))
(error 'thing "Invalid poilint: ~s" p)]
else '"...]))

(thing (point -3 2))
=> thing: Invalid point: #<point>

Why? Without it...

®
4

With lists, equal? performs structural

comparison

(e

®
4

(e

de
(e

qual? ' (point 3 4) '(point 3 4)) => #t

P

eq? asks 1f the arguments are the same

P

qg? ' (point 3 4) '(point 3 4)) => #f

With structs, equal? acts like eg? by
fault!
qual? (point 3 4) (point 3 4)) =>

Equality isn't structural

object

Let's build a tree
complex recursive data type!

tree.rkt Used heavily in
Part 2 of HW 4!

lang racket

, Provide the procedures for working with trees.
(provide tree make-tree empty-tree

tree? empty-tree? leatf?
tree-value tree-children)

. Provide 8 example trees.
(provide empty—-tree T1 T2 T3 T4 TS5 To T7 T8)

Tree definition and a special value

. Definition of tree datatype
(struct tree (value children) :transparent)

. An empty tree Is represented by null
(define empty—-tree null)

. (empty-tree? empty-tree) returns #t
(define empty-—-tree? null?)

, Convenience constructor
, (make-tree v cl c2 ... cn) Is equivalent to

, (tree v (listcl c2 ... cn))
(define (make-tree wvalue

(Cree value children))

children)

Reminder: variadic function!

Utility procedure

c If the tree t IS a leat.

* Returns #t
(define (leaf? t)
(cond | (empty—-tree? t) #I]
L

not (tree? t))
(error 'leaf? "~s 1s not a tree" t)]

(else (empty? (tree—-children t))]))

Example (number) trees

0
Z

O
]/

))
))
))
)
)

(define T1 (
(define T2 (
(define T3 (
(define T4 (
(define TS5 (make—-tree)
((
((
((

®
2
make—-tree 1
J)
1

define To (make—-tree 73 TI1
define T
define T8

make—-tree 100 T4 T
make—-tree 16 To T

A tree Is represented as a struct: (tree value children).

If you want to count how many children a particular (nonempty) tree
t has, what's the best way to do it?

A. (length (tree-children t))

B. (length (third t))

. (length (rest t))

D. (Length (rest (rest t)))

. (length (caddr t))

Talking about Types

Why do languages have types?

Why do you think some languages have static types?

Why do you think some languages have dynamic
types?

Dynamically-checked types

Dynamically-typed languages assign types to values at runtime

In Racket, we can ask what the type of a value Is:
number?, 11st?, pair?, boolean?, elcC.

Functions are forced to check that the types of their input match
the expected type

Racket and Python are examples of dynamically-typed
languages

What does this code do?
(define (mul x V)
(1f (= x 0)
0
(" x y)))
(mul O '"blah)

A. Syntax error

B. Contract violation
C.Runtime error
D.Warning about 'bla

E. Returns O

No explicit error checking!

(define (mul x V)

(if (= x 0)
0
(* X Vy)))

(mul 10 '"blah)
This gives a contract error:
*: contract violation
expected: number?
given: 'blah

Note that the contract error Is on *, not mul

Implementing explicit error checking

(define (mul x v)

(cond [(not (number? x))
(error 'mul "not a number: ~s" x) |
| (not (number? v))
(error "'mul "not a number: ~s" vy) |
[(= x 0) O]

lelse (" X vy)]l))

(mul O "blah)

This gives the following error:
mul: not a number: blah

Aside: Contracts

Brief aside: Contracts

Welcome to DrRacket, version 8.5 [cs].

Language: racket, with debugging; memory limit: 128 MB.
0

% @ *: contract violation
expected: number?

given: 'blah
>

You have probably seen these errors In
all your Racket programming. But what

exactly does “contract violation™ mean
here?

Brief aside: Contracts

Contracts are a predicate that declares some fact about a
value that must be true

number? - The value I1s a number

1list? - The value is a list

positive? - The value Is positive
pair? - The valueis a cons cell

any/c - Every value satisfies this contract

Contracts can help us do runtime error
checking!
(define/contract (mul x V)

; X, VY, and return value are numbers
(—=> number? number? number?)

(1f (= x 0)
0
(* x y))) -
(mul O 'blah) This gives a contract error:

mul: contract violation
expected: number?
given: 'blah
1n: the 2nd argument of
(—=> number? number? number?)

Challenges of Dynamic Typing

Errors like passing and returning the wrong types of values are not
caught until run time, even with contracts

(define/contract (faclist n)
(=> positive? (listof 1nteger?))
(cond [(equal? n 1) 1]

- else (cons n (faclist (subl n)))]))

This has a type error, but it won't be caught until runtime
faclist: broke 1ts own contract

promised: list?
produced: '(o6 5 4 3 2 . 1)

Statically-checked types

Statically-typed languages compute a static approximation of
the runtime types

The type of an expression Is computed from the types of ItS
sub expressions

This can be used to rule out a whole class of type errors at
compile time

C, Java, Rust, and Haskell are examples of statically-typed
languages

A Decision!

For the rest of today, we're going to talk about static
types

We could have done a small vignette of a type functional
programming language (Haskell, Ocaml, etc.)

A Decision!

For the rest of today, we're going to talk about static
types

Would recommend Racket
over Typed Racket though In
Mmost cases

Really helpful because can give you a

direct comparison between dynamic and
statically typed languages

Instead: we will discuss types using Typed Racket

Also used In a Summary

Problems

Adding Types to Racket

To start off with, what are the types we have available?

Boolean

String

Number — but also a complex hierarchy here including
Integer, Float-Complex, elC.

Adding Types to Functions

We provide type signatures as follows:

L UrncC

fine

c1on—name (—> 1nput-

(

func:

Clon—name 1npu

cype ou

Cpur

(]

type))

Below Is a sum method In Racket. What should its type
sighature be?

(define (asum X V)
(+ X y))

A.(: asum (—=> Number Number))

B.(: asum (—-> Number Number Number))

P

C.(: asum (-> (Listof Number) Number))

D.Something else

Below Is a sum method In Racket. What should its type
sighature be?

(define (bsum 1lst)
(cond [(empty? 1st) O]
lelse (+ (first 1lst) (bsum (rest 1lst)))]))

A.(: bsum (—> Number Number))

B.(: bsum (-> Number Number Number))

C.(: bsum (-> (Listof Number) Number))

D.Something else

What IS Listof?

P

We decided (: bsum (-> (Listof Number) Number)
IS the type for summing the elements of a list.

Listof Is not actually a type, but rather a type constructor

Supporting type constructors

(for Instance, lists, arrays,
references) Is non-trivial

Integer) IS meaningful,
Listof) IS not

(Listo:
(Listo:

N ™

Similarly, (String String) does not work

How can we support procedures that output
multiple types?

Motivation: Racket's member procedure has the following
behavior

P

(member 4 (list 1 2 3)) glves #f

(member 2 (list 1 2 3)) gives ‘(2 3)

S0... how to state the return type if we want to write
(member (—> Number (Listof Number) ?2727?)

Answer Is Union Types!

Union here Is Inspired by mathematical set union

;number specific member 1mplementation
(: nmem (—> Number (Listof Number)
(U False (Listof Number))))

(defi1ne (nmem x 1st)

ce o))

Next Up

Homework 4 1s due Friday at 11:59pm
- First Commit due tonight

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Announcements
	Slide 3: Reminder: Structs
	Slide 4: Reminder: Struct Data Types
	Slide 5: Example point
	Slide 6: One more addition: Make the struct transparent
	Slide 7: Why? Without it…
	Slide 8: Why? Without it…
	Slide 9: Let’s build a tree complex recursive data type!
	Slide 10: tree.rkt
	Slide 11: Tree definition and a special value
	Slide 12: Utility procedure
	Slide 13: Example (number) trees
	Slide 14: A tree is represented as a struct: (tree value children). If you want to count how many children a particular (nonempty) tree t has, what's the best way to do it?
	Slide 15: Talking about Types
	Slide 16: Why do languages have types? Why do you think some languages have static types? Why do you think some languages have dynamic types?
	Slide 17: Dynamically-checked types
	Slide 18: What does this code do? (define (mul x y) (if (= x 0) 0 (* x y))) (mul 0 'blah)
	Slide 19: No explicit error checking!
	Slide 20: Implementing explicit error checking
	Slide 21: Aside: Contracts
	Slide 22: Brief aside: Contracts
	Slide 23: Brief aside: Contracts
	Slide 24: Contracts can help us do runtime error checking!
	Slide 25: Challenges of Dynamic Typing
	Slide 26: Statically-checked types
	Slide 27: A Decision!
	Slide 28: A Decision!
	Slide 29: Adding Types to Racket
	Slide 30: Adding Types to Functions
	Slide 31: Below is a sum method in Racket. What should its type signature be? (define (asum x y) (+ x y))
	Slide 32: Below is a sum method in Racket. What should its type signature be? (define (bsum lst) (cond [(empty? lst) 0] [else (+ (first lst) (bsum (rest lst)))]))
	Slide 33: What is Listof?
	Slide 34: How can we support procedures that output multiple types?
	Slide 35: Answer is Union Types!
	Slide 36: Next Up

