CSCI 275:
Programming Abstractions

Lecture 10: The world of folds
Spring 2025

Stephen Checkoway, Oberlin College 2 s
Slides gratefully borrowed from Molly Q Feldman

Questions for the good of the group?

a and [are types. And let's say proc takes elements

of type a and produces elements of type £ (l.e. the type
of proc ISa - f5) .

When calling (map proc 1lst), what Is the type of
1st? What Is the type of map's return?

A. List of G, List of
B. List of a, List of «
C. List of a, list of £

D. List of 3, List of «
. Somethlng else

Review: map

Applies a procedure to each element of a list

a and [are types

(map proc 1lst)
proc : a — [0
lst : list of «

map returns 1ist of [
E.Q.,
1nteger

a = number,
(V

map floor '(1.3 2.8 =-8.5))

Review: apply

Applies a procedure the arguments in a list

(apply proc 1lst)

proc &, X &, X Xan_)ﬁ

lst @ (a; a, .. a,)

apply returns S

E.Q.,

@, = number, a, = boolean,ff = number

(apply (lambda (n b) (1:

(o #L))

1 —

e

(— n)

n))

Even more abstractions, and
thus tools In our toolbox

| ots of similarities between functions

(sum lst)

(define (sum lst)
(cond [(empty? 1lst)]
else (+ (first 1st)
(sum (rest 1st)))]))

(length 1lst)

(define (length 1st)
(cond [(empty? 1lst)]
else (+ 1
(length (rest 1st)))]))

(map proc 1l1lst)

(define (map proc 1lst)
(cond [(empty? 1lst) _

else (cons (proc (first 1lst))
(map proc (rest 1st)))]))

Even for functions that don’t immediately look
like they fall into the pattern...

(remove* x lst)

(define (remove* xX 1st)

(cond [(empty? 1lst) empty]
(equal? x (first 1st)) (remove* x (rest 1lst))]
else (cons (first 1lst)

(remove* x (rest 1lst)))]))

Even for functions that don’t immediately look
like they fall into the pattern...

(remove* x lst)

(define (remove* xX 1st)

(cond [(empty? 1lst) empty]
(equal? x (first 1st)) (remove* x (rest 1lst))]
else (cons (first 1lst)

(remove* x (rest 1lst)))]))

We can rewrite them to look more like the others

(define (remove* X 1st)
(cond [(empty? 1lst)]

else (1f (equal? x (first 1lst))
(remove* xX (rest 1st))
(cons (first 1lst)

(remove* x (rest 1st))))]))

Some similarities
Basic structure I1s the same!

(define (fun lst)
(cond [(empty? 1lst)]
else
(let ([head (first 1lst) |
‘result (fun .. (rest 1lst)) |)

(combine head result))]))
Function base-case (combine head result)
sum 0 (+ head result)
length 0 (+ 1 result)
map empty (cons (proc head) result)

(1£f (equal? x head) result

removes cmpty (cons head result))

(fun 1st)

(empty? 1lst) base-case]

else (let ([head (first 1lst)]

‘result (fun (rest 1lst))])
(combine head result))]))

F

Ilst: 1list of «

base-case: f8 What kind of function IS combine?
(Input type to output type)

.comblne:
B.combilne:
.comblne:
D.combine:

(fun 1st)

(empty? 1lst) base-case]

else (let ([head (first 1lst)]

‘result (fun (rest 1st))])
(combine head result))]))

Ilst: list of «

base-case: f

combine: a x [- [
Ifa = booleanand f = string,
what typeIs (fun ' (#t #f #£f))? A.boolean
B.string
C.boolean — string
D.string - boolean

Abstraction: fold right

(foldr combine base-case lst)

combine: a x [- [

Ilst: list of
foldr: (a x ﬁ - pB) x [x (list of a) - P

Elementsof 1st = (x;, x, ... x_) andbase-case are combined
by computing
z. = (combine x, base-case)

Z = (combine x,, z.)
z._, = (combine x_ ., z ;)

z, = (combine x, z,)

Abstraction: fold right

(foldr combine base-case lst)

cCons combine
/" N\ RN
1 cons 1 combine
VRN SN\
2 Ccons # ? combine
/N /..
3 cons 3 combilne
/7 N\ /" N\
4 cons 4 combine
/N /" N\
5 () 5 base-case

Possible Input 1st

Executing foldr

sum as a fold right

(foldr combine base-case lst)

(define sum combine: number x number — number
(lambda (lst) .
(foldr + 0 1st))) lst: list of number
cons n
/"\ /N
cons 1 n
/"\ /7 N\
CONS # 2 +
/"\ 7\
cons 3 Y
/”‘\ /" N\
cons / 1

N /N
5 5

length as a fold right

(foldr combine base-case lst)

(define (length 1lst)
(foldr (lambda (head result) (+ 1 result)) 0 1lst))

cons A

VRN VRN
1 cons 1 A
VRN VRN
2 cons # D A
VAN /N
3 cons 3 A
VRN VRN
4 cCOons 4 A
VAN VN

S () 5 0

map as fold right

(foldr combine base-case lst)

(define (map proc 1lst)
(foldr (lambda (head result)
(cons (proc head) result))
empty
lst))

proc: a - f

combine: a x (list of f[) - list o:
base-case: list of f

lst: list of «

map: (¢ - pf) x (list of a) - list o:

=

1)

remove* as fold right

(foldr combine base-case lst)

(define (remove* x 1st)
(foldr (lambda (head result)

(1f (equal? x head)
result

(cons head result)))

lst))
X:

1)

combine: a x (list of a) - list o:

Ilst: list of «
(

1)

remove*: a& x (list of a) — list o:

-

K

Consider the procedure
(foldr (lambda (str num)

(+ num (string-length str)))

0
\ (\\red// \\green// \\blue//))

What does this do?

A. Multiplies all the string lengths

B. Counts number of elements in the list
C. Sums all the string lengths

D. Error

Example: alight switch "state machine”

Example: a light switch "state machine”

Consider a light switch connected to a light

The light Is In one of two states: on and off
* Represent this with symbols 'on and 'of

There are three actions we can take
* 'up: mMove the switch to the up position; turns the light on

* 'down: move the switch to the down position; turns the light off
* 'f1ip: flip the position of the switch; changes the state of the light

ﬁ

If the light Is Initially ' of £, then after the sequence of actions
'(up up down flip flip flip), the light will be 'on

Implement the state machine
Possible actions: 'up, 'down, '"flip

Possible states: 'on, 'off

Write a|(next-state action state) |[function that returns

the next state of the light after the action Is performed In the
given state (no higher order needed!)

Write a|(state-after actions) that returns the state of the
light assuming It's Initially 'of £ and the actions In the list
actions are performed in order
* Use foldr!
* Be careful about the order:
(state—-after '"(up flip)) => 'o

Takeaway from state machine example

foldr really is fold right

re

curn-value <«

*h

— pbase—-case

Next Up

Readings do continue!

Homework 2 i1s live, due Friday at 11:59pm via GitHub

* Feel free to use whatever structures you'd like to solve it (higher order not
required, HW3/4 they will bel!)

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions for the good of the group?
	Slide 3: 𝛼 and 𝛽 are types. And let’s say proc takes elements of type 𝛼 and produces elements of type 𝛽 (i.e. the type of proc is 𝛼 → 𝛽). When calling (map proc lst), what is the type of lst? What is the type of map’s return?
	Slide 4: Review: map
	Slide 5: Review: apply
	Slide 6: Even more abstractions, and thus tools in our toolbox
	Slide 7: Lots of similarities between functions
	Slide 8: Even for functions that don’t immediately look like they fall into the pattern…
	Slide 9: Even for functions that don’t immediately look like they fall into the pattern…
	Slide 10: Some similarities
	Slide 11: (define (fun lst) (cond [(empty? lst) base-case] [else (let ([head (first lst)] [result (fun (rest lst))]) (combine head result))])) lst: list of 𝛼 base-case: 𝛽
	Slide 12: (define (fun lst) (cond [(empty? lst) base-case] [else (let ([head (first lst)] [result (fun (rest lst))]) (combine head result))])) lst: list of 𝛼 base-case: 𝛽 combine: 𝛼 × 𝛽 → 𝛽 If 𝛼 = boolea
	Slide 13: Abstraction: fold right
	Slide 14: Abstraction: fold right
	Slide 15: sum as a fold right
	Slide 16: length as a fold right
	Slide 17: map as fold right
	Slide 18: remove* as fold right
	Slide 19: Consider the procedure (foldr (lambda (str num) (+ num (string-length str))) 0 ‘(“red” “green” “blue”)) What does this do?
	Slide 21: Example: a light switch "state machine"
	Slide 22: Example: a light switch "state machine"
	Slide 23: Implement the state machine
	Slide 24: Takeaway from state machine example
	Slide 28: Next Up

