
CSCI 275:
Programming Abstractions
Lecture 9: apply & fold right

Spring 2025

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Another tool: apply

Motivation

Imagine you have a list of numbers and you want to multiply them all together

We know (* 3 5 7 -2 8 10) works but how do we make that into a

function if we don’t know how many numbers we have ahead of time?

(define (product lst)

???)

We could write a recursive procedure but it’d be great if we could just use the
elements in lst as the arguments to *

Applying a procedure to a list of arguments
(apply proc lst)

Applies proc to the arguments in lst and returns a single value

(define (maximum lst)

(apply max lst))

(maximum '(1 3 4 2)) => (apply max '(1 3 4 2))

=> (max 1 3 4 2)

=> 4

(define sum

(lambda (lst)

(apply + lst))

(sum '(1 2 3)) => (apply + '(1 2 3)) =>

(+ 1 2 3) => 6

+ in Racket can

take any number

of arguments

Applying with some fixed arguments
(apply proc v… lst)

apply takes a variable number of arguments where the final one is

a list and applies proc to all of those arguments

(apply proc 1 2 3 '(4 5 6)) => (proc 1 2 3 4 5 6)

You’re working with 3-d vectors stored as 3-element
lists—e.g. ‘(-5 8 6.2). You have a function

(vector-len x y z) which gives the length of the

vector and a list of vectors
(define vecs ‘((-5 8 6.2) (1 -2 3) …))

How do you get a list of the lengths of the vectors?

A.(map vector-len vecs)

B.(apply vector-len vecs)

C.(map (λ (v) (apply vector-len v)) vecs)

D.(apply (λ (v) (map vector-len v)) vecs)
1

4

Even more abstractions, and
thus tools in our toolbox

Lots of similarities between functions
(sum lst)

(define (sum lst)

(cond [(empty? lst) 0]

[else (+ (first lst)

(sum (rest lst)))]))

(length lst)

(define (length lst)

(cond [(empty? lst) 0]

[else (+ 1

(length (rest lst)))]))

(map proc lst)

(define (map proc lst)

(cond [(empty? lst) empty]

[else (cons (proc (first lst))

(map proc (rest lst)))]))

(remove* x lst)

(define (remove* x lst)

(cond [(empty? lst) empty]

[(equal? x (first lst)) (remove* x (rest lst))]

[else (cons (first lst)

(remove* x (rest lst)))]))

Let's rewrite this one to look more like the others

(define (remove* x lst)

(cond [(empty? lst) empty]

[else (if (equal? x (first lst))

(remove* x (rest lst))

(cons (first lst)

(remove* x (rest lst))))]))

Even for functions that don’t immediately look
like they fall into the pattern…

Even for functions that don’t immediately look
like they fall into the pattern…

(remove* x lst)

(define (remove* x lst)

(cond [(empty? lst) empty]

[(equal? x (first lst)) (remove* x (rest lst))]

[else (cons (first lst)

(remove* x (rest lst)))]))

We can rewrite them to look more like the others

(define (remove* x lst)

(cond [(empty? lst) empty]

[else (if (equal? x (first lst))

(remove* x (rest lst))

(cons (first lst)

(remove* x (rest lst))))]))

Some similarities
Basic structure is the same!
(define (fun … lst)

(cond [(empty? lst) base-case]

[else

(let ([head (first lst)]

[result (fun … (rest lst))])

(combine head result))]))

Function base-case (combine head result)

sum 0 (+ head result)

length 0 (+ 1 result)

map empty (cons (proc head) result)

remove* empty
(if (equal? x head) result

(cons head result))

(define (fun lst)

(cond [(empty? lst) base-case]

[else (let ([head (first lst)]

[result (fun (rest lst))])

(combine head result))]))

lst: list of 𝛼
base-case: 𝛽

A.combine: 𝛼 × 𝛽 → 𝛼
B.combine: 𝛼 × 𝛽 → 𝛽
C.combine: 𝛽 × 𝛼 → 𝛼
D.combine: 𝛽 × 𝛼 → 𝛽

What kind of function is combine?

(input type to output type)

(define (fun lst)

(cond [(empty? lst) base-case]

[else (let ([head (first lst)]

[result (fun (rest lst))])

(combine head result))]))

lst: list of 𝛼
base-case: 𝛽
combine: 𝛼 × 𝛽 → 𝛽
If 𝛼 = boolean and 𝛽 = string,

what type is (fun '(#t #f #f))? A.boolean

B.string

C.boolean → string

D.string → boolean
2

6

Next Up

Readings continue, see the course schedule!

Homework 2 is due tonight at 11:59pm via Github

• Commit/Push is free, do it often!

Homework 3 is available

	Slide 1: CSCI 275: Programming Abstractions
	Slide 8: Another tool: apply
	Slide 9: Motivation
	Slide 10: Applying a procedure to a list of arguments
	Slide 12: Applying with some fixed arguments
	Slide 14: You’re working with 3-d vectors stored as 3-element lists—e.g. ‘(-5 8 6.2). You have a function (vector-len x y z) which gives the length of the vector and a list of vectors (define vecs ‘((-5 8 6.2) (1 -2 3) …)) How do you get a list of the len
	Slide 19: Even more abstractions, and thus tools in our toolbox
	Slide 21: Lots of similarities between functions
	Slide 22: Even for functions that don’t immediately look like they fall into the pattern…
	Slide 23: Even for functions that don’t immediately look like they fall into the pattern…
	Slide 24: Some similarities
	Slide 25: (define (fun lst) (cond [(empty? lst) base-case] [else (let ([head (first lst)] [result (fun (rest lst))]) (combine head result))])) lst: list of 𝛼 base-case: 𝛽
	Slide 26: (define (fun lst) (cond [(empty? lst) base-case] [else (let ([head (first lst)] [result (fun (rest lst))]) (combine head result))])) lst: list of 𝛼 base-case: 𝛽 combine: 𝛼 × 𝛽 → 𝛽 If 𝛼 = boolea
	Slide 37: Next Up

