CSCI 275:
Programming Abstractions

Lecture O7: Function Design - Part 2
Spring 2025

Stephen Checkoway, Oberlin College 2 s
Slides gratefully borrowed from Molly Q Feldman

Questions? Comments?

Goals for Today’s Class
 Local variables: 1et

* Environments: how do we store bindings?

» [If ime] Tall Recursion, or how to be efficient

et

Storing Local Information

(Llet ([1dl s—expl] [1d2 s—expZ2]..) body)

let enables us to create some new bindings that are visible only inside
body

(let ([x 37] ; binds x to 37
v (foo 42)]) ; binds y to the result of (foo 42)
(1f (< x V)
(bar x)
(bar vy)))

x and y are only bound inside the body of the let expression

That Is, the scope of the identifiers bound by 1et IS body

What happens when you want a binding In
terms of an existing one?

When writing programs, Iit's not uncommon to define some local
variables in terms of other local variables

(define (all-larger? 1lst)

Given a list, Is everything after the first

element larger than the first element?

(let ([head (first 1lst) |
‘streamlined
(filter (A (xX) (> x head)) (rest 1lst))])

(palr? streamlined)))

This doesn't work: we can't use head In the definition of
streamlined

The FIx? Sequential let
(let* ([1dl s-expl] [1d2 s-exp2]..) body)

Later s-exps can use earlier ids!

Example:

Environments

How we Know what x means?

Recall that when Racket evaluates a variable, the result Is the
value that the variable 1s bound to

If we have (define x 10), then evaluating x gives us the value

10
If we have (define (foo x) (- x v)),thenevaluating foo
glives us the procedure (lambda (x) (- x vy)), alongwith a

way to get the value of v (which Is hopefully defined!)

Racket needs a way to look up values that correspond to
variables: an environment

Environments: Examples

(let ([x 2]
ly 31)
(+ X Vy))

When we execute the following, what Is the result?

(Llet (I

2

31)

(let ([x 47)
(+ X y)))

X
Y
(

A. 6
B.9
C.7

D. Something else

Environments: Examples

(let ([x 4])
<e+xyx>>> J

When we execute the following, what Is the result?

(let (

(let [:_-

(£

X
Y
(
9

A. 8
B. 7/
C.5

D. Something else

DrRacket shows variable bindings

Mouse over an identifier in DrRacket

(let ([x 21 [y 31)
(let ([f (lambda (%) —(+x y))])
(f 5)))

(let ([x 2] [y-31)
(let ([f (lambda (x) (+x¥))])
(f 5)))

Environment Operations

Two basic operations on environments:

1. Look something up
* What is the binding of x right now?

2. Extend an existing environment with new bindings
* Creates a new environment containing both the existing
and the new bindings

Look Up In Environments

Look up the value to which a symbol is bound:

(let (
(let
(+ X 2)))

(x 3])

should return 9 since the innermost binding of x Is 4

Extending Environments: Let

Consider
(let ([x (+ 3 4)]
'y 9.
'z (foo 8)])
body)

We have three symbols x, vy, and z and three values, 7, 5, and
whatever the result of (foo 8) Is, let's say it's 12

If E IS the environment of the whole let expression, then the body

should be evaluated in the environment
Elx v 7, v 5, z 12]

Closures

The expression of (lambda parameters body..) evaluates
to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one
expression)

- The environment (the mapping of identifiers to values) at the
time the lambda expression is evaluated not the time the
closure Is called

19

Environments & Procedure Calls

(de
(de

fine A 10)

fine add-a

(Lambda (x)

(t+ X A)))

Calling the closure extends the
closure's environment with Its
parameters bound to the arguments

(add—-a 20)

When called, the closure's body IS
evaluated with this new environment

20

Environment of the closure

Keep it around! Part
of what the closure
contains!

Environment of the call

A 10
X 20

Even More Let

A realistic example

Let's write a procedure |(split-by pred 1lst) [that splits Ist into two lists, the

first contains all of the elements that match pred, the second contains all the
elements that do not match pred

(split-by even? (range 10)) => "((0 2 4 6 8) (1 3 5 7 9))

(split-by (lambda (x) (< x 3)) (range 5)) =>
'((0 1 2) (3 4))

Recursion

Often, we're going to want to define a recursive procedure In a

let. For example,
(define (count-bigger-than-first 1lst)
(let* ([head (first 1lst)]

(A (Llst)
(cond [(empty? 1lst) O]
(> (fi1rst 1lst) head)
(+ 1 ((rest 1lst)))]
lelse (rest 1st))]))1])

(count (rest 1lst))))

Unfortunately, we can't use INn the definition of

Recursive let
(letrec ([1dl s-expl]

All of the s-exps can refer to all of the ids

This Is used to make recursive procedures

(de:

(letrec

"1ne (count-bigger—-than-first 1st)
([head (first 1lst)]
' (A (lst)
(cond | (e
(> (first
(+ 1
[else (
(rest 1lst))))

(count

mpty? lst) O]

(res
(res

lst) head

—

e

[1d2 s-exp2]..) body)

Can’t we just always use letrec then?

Nope, a subtle point: the values of the identifiers we're binding can't be
used In the bindings

Invalid (the value of x Is used to define v)

(letrec (

x 1
y (+ x 1)])

Y)
Valid (the value of x i1sn't used to define v, It's only used when vy IS

called)

(letrec (]

—~

lambda () (+ x 1)) 1)

< X

(y))

Next Up

HW?2 due at 11:59pm Friday — first commit due tonight

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Comments?
	Slide 3: Goals for Today’s Class
	Slide 4: Let
	Slide 5: Storing Local Information
	Slide 6: What happens when you want a binding in terms of an existing one?
	Slide 7: The Fix? Sequential let
	Slide 9: Environments
	Slide 10: How we know what x means?
	Slide 11: Environments: Examples
	Slide 12: When we execute the following, what is the result? (let ([x 2] [y 3]) (let ([x 4]) (+ x y)))
	Slide 13: Environments: Examples
	Slide 14: When we execute the following, what is the result? (let ([x 2] [y 3]) (let ([f (lambda (x) (+ x y))]) (f 5)))
	Slide 15: DrRacket shows variable bindings
	Slide 16: Environment Operations
	Slide 17: Look Up in Environments
	Slide 18: Extending Environments: Let
	Slide 19: Closures
	Slide 20: Environments & Procedure Calls
	Slide 21: Even More Let
	Slide 22: A realistic example
	Slide 23: Recursion
	Slide 24: Recursive let
	Slide 25: Can’t we just always use letrec then?
	Slide 41: Next Up

