
CSCI 275:
Programming Abstractions
Lecture 07: Function Design - Part 2

Spring 2025

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Questions? Comments?

Goals for Today’s Class

• Local variables: let

• Environments: how do we store bindings?

• [If time] Tail Recursion, or how to be efficient

Let

Storing Local Information
(let ([id1 s-exp1] [id2 s-exp2]…) body)

let enables us to create some new bindings that are visible only inside

body

(let ([x 37] ; binds x to 37

[y (foo 42)]) ; binds y to the result of (foo 42)

(if (< x y)

(bar x)

(bar y)))

x and y are only bound inside the body of the let expression

That is, the scope of the identifiers bound by let is body

What happens when you want a binding in
terms of an existing one?

When writing programs, it's not uncommon to define some local

variables in terms of other local variables

(define (all-larger? lst)

(let ([head (first lst)]

[streamlined

(filter (λ (x) (> x head)) (rest lst))])

(pair? streamlined)))

Given a list, is everything after the first

element larger than the first element?

This doesn't work; we can't use head in the definition of

streamlined

The Fix? Sequential let
(let* ([id1 s-exp1] [id2 s-exp2]…) body)

Later s-exps can use earlier ids!

Example:

(let* ([x 5]

[y (foo x)]

[z (+ x y)])

(bar z y))

Environments

How we know what x means?

Recall that when Racket evaluates a variable, the result is the

value that the variable is bound to

If we have (define x 10), then evaluating x gives us the value

10

If we have (define (foo x) (- x y)), then evaluating foo

gives us the procedure (lambda (x) (- x y)), along with a

way to get the value of y (which is hopefully defined!)

Racket needs a way to look up values that correspond to

variables: an environment

(let ([x 2]

[y 3])

(+ x y))

x

y

2

3

Environments: Examples

When we execute the following, what is the result?

(let ([x 2]

[y 3])

(let ([x 4])

(+ x y)))

A. 6

B. 9

C. 7

D. Something else

1

2

(let ([x 2]

[y 3])

(let ([x 4])

(+ x y)))

x

y

2

3

Environments: Examples

x 4

When we execute the following, what is the result?

(let ([x 2]

[y 3])

(let ([f (lambda (x) (+ x y))])

(f 5)))

A. 8

B. 7

C. 5

D. Something else

1

4

DrRacket shows variable bindings

Mouse over an identifier in DrRacket

Environment Operations

Two basic operations on environments:

1. Look something up
• What is the binding of x right now?

2. Extend an existing environment with new bindings

• Creates a new environment containing both the existing

and the new bindings

Look Up in Environments

Look up the value to which a symbol is bound:

(let ([x 3])

(let ([x 4])

(+ x 5)))

should return 9 since the innermost binding of x is 4

Extending Environments: Let

Consider
(let ([x (+ 3 4)]

[y 5]

[z (foo 8)])

body)

We have three symbols x, y, and z and three values, 7, 5, and

whatever the result of (foo 8) is, let's say it's 12

If E is the environment of the whole let expression, then the body

should be evaluated in the environment
E[x ↦ 7, y ↦ 5, z ↦ 12]

Closures

The expression of (lambda parameters body…) evaluates

to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one

expression)

- The environment (the mapping of identifiers to values) at the

time the lambda expression is evaluated not the time the

closure is called
19

Environments & Procedure Calls

(define A 10)

(define add-a

(lambda (x)

(+ x A)))

Calling the closure extends the

closure's environment with its

parameters bound to the arguments

(add-a 20)

When called, the closure's body is

evaluated with this new environment
20

A 10

Environment of the closure

A 10

x 20

Environment of the call

Keep it around! Part

of what the closure

contains!

Even More Let

A realistic example

Let’s write a procedure (split-by pred lst) that splits lst into two lists, the

first contains all of the elements that match pred, the second contains all the

elements that do not match pred

(split-by even? (range 10)) => '((0 2 4 6 8) (1 3 5 7 9))

(split-by (lambda (x) (< x 3)) (range 5)) =>

'((0 1 2) (3 4))

Recursion

Often, we're going to want to define a recursive procedure in a
let. For example,
(define (count-bigger-than-first lst)

(let* ([head (first lst)]

[count (λ (lst)

(cond [(empty? lst) 0]

[(> (first lst) head)

(+ 1 (count (rest lst)))]

[else (count (rest lst))]))])

(count (rest lst))))

Unfortunately, we can't use count in the definition of count

Recursive let
(letrec ([id1 s-exp1] [id2 s-exp2]…) body)

All of the s-exps can refer to all of the ids

This is used to make recursive procedures
(define (count-bigger-than-first lst)

(letrec ([head (first lst)]

[count (λ (lst)

(cond [(empty? lst) 0]

[(> (first lst) head)

(+ 1 (count (rest lst)))]

[else (count (rest lst))]))])

(count (rest lst))))

Can’t we just always use letrec then?

Nope, a subtle point: the values of the identifiers we're binding can't be

used in the bindings

Invalid (the value of x is used to define y)

(letrec ([x 1]

[y (+ x 1)])

y)

Valid (the value of x isn't used to define y, it's only used when y is

called)

(letrec ([x 1]

[y (lambda () (+ x 1))])

(y))

Next Up

HW2 due at 11:59pm Friday – first commit due tonight

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Comments?
	Slide 3: Goals for Today’s Class
	Slide 4: Let
	Slide 5: Storing Local Information
	Slide 6: What happens when you want a binding in terms of an existing one?
	Slide 7: The Fix? Sequential let
	Slide 9: Environments
	Slide 10: How we know what x means?
	Slide 11: Environments: Examples
	Slide 12: When we execute the following, what is the result? (let ([x 2] [y 3]) (let ([x 4]) (+ x y)))
	Slide 13: Environments: Examples
	Slide 14: When we execute the following, what is the result? (let ([x 2] [y 3]) (let ([f (lambda (x) (+ x y))]) (f 5)))
	Slide 15: DrRacket shows variable bindings
	Slide 16: Environment Operations
	Slide 17: Look Up in Environments
	Slide 18: Extending Environments: Let
	Slide 19: Closures
	Slide 20: Environments & Procedure Calls
	Slide 21: Even More Let
	Slide 22: A realistic example
	Slide 23: Recursion
	Slide 24: Recursive let
	Slide 25: Can’t we just always use letrec then?
	Slide 41: Next Up

