
CSCI 275:
Programming Abstractions
Lecture 36: Practical Concerns (cont.) & Wrap Up (you did it!)

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Practical Concerns

Partial answers to three big questions:

(1) What PL should I learn for what task?

(1) Why do we make new ones?

(1) Why do we have the languages that we have?

I’ll give you my (and others’) opinions on these! Not definitive, but hopefully
fun/interesting. Also, I’ll hopefully provide some helpful links.

Why do we have the languages
we have?

What is your preferred single line comment

symbol?

A.//

B.%

C.#

D. /* */

E.Something else

7

Language & Hardware Coupling

In ~1960s, the development of languages tracked with the

development of computer hardware and the systems stack

• They were still working on the abstractions that would lead to

ideas like modern Unix

Dennis M. Ritchie. 1993. The development of the C language. SIGPLAN Not. 28, 3 (March 1993), 201–208.

https://doi.org/10.1145/155360.155580

A (Very) Short History
Most modern programming languages can trace their roots back to either
(or both) of Fortran and Algol 60

Algol 60 circa 1960, built for specific hardware, implemented call-by-name

Fortran circa 1957

“The IBM Mathematical Formula Translating System FORTRAN is an

automatic coding system for the IBM 704 EDPM. More precisely, it is a 704

program which accepts a source program written in a language - the

FORTRAN language - closely resembling the ordinary language of

mathematics, and which produces an object program in 704 machine

language, ready to be run on a 704.” (Fortran Manual)

http://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf

Language & Hardware Coupling

In ~1960s, the development of languages tracked with the

development of computer hardware and the systems stack

• They were still working on the abstractions that would lead to

ideas like modern Unix

• Languages were built very low level – languages before C

(e.g. PL/I and BCPL) are even closer to the file system, etc.

C’s origins start with BCPL and are most closely related to the B

programming language

Dennis M. Ritchie. 1993. The development of the C language. SIGPLAN Not. 28, 3 (March 1993), 201–208.

https://doi.org/10.1145/155360.155580

How do languages evolve?

“Other fiddles in the transition from BCPL to B were

introduced as a matter of taste, and some remain

controversial, for example the decision to use the single
character = for assignment instead of :=. Similarly, B

uses /* */ to enclose comments, where BCPL uses

//, to ignore text up to the end of the line. The legacy of

PL/I is evident here. (C++ has resurrected the BCPL

comment convention).” [pg, 3]

Dennis M. Ritchie. 1993. The development of the C language. SIGPLAN Not. 28, 3 (March 1993), 201–208.

https://doi.org/10.1145/155360.155580

The real question answered: Why is it called
C?

Dennis M. Ritchie. 1993. The development of the C language. SIGPLAN Not. 28, 3 (March 1993), 201–208.

https://doi.org/10.1145/155360.155580

“After creating the type system, the associated syntax, and

the compiler for the new language, I felt that it deserved a

new name; NB seemed insufficiently distinctive. I decided

to follow the single-letter style and called it C, leaving

open the question whether the name represented a

progression through the alphabet or through the

letters in BCPL.”

Some Folks Have Tried to Graph This

https://hopl.info/

As far as I can tell,

unrelated/unaffiliated with

the HOPL conference

https://hopl.info/

Let’s say I want to print out the string that contains

hello world. How do I do that in Python?

A.print ‘hello world!’

B.print(“hello world!”)

C.print(‘hello world!’)

D.print “hello world!”

E.Depends / More than one of the above

14

Even if it’s the same language, it changes

There are new language releases all the time

Big Changes to Existing Languages

But proper changes between core versions are much less

common (e.g. Python 2 and Python 3)

Two questions you might have:

1. What is different between Python 2 and Python 3?

2. When did this transition happen?

https://python3statement.org/

https://python3statement.org/

Python 2 to Python 3

A lot of Python 3 is backwards compatible to Python 2

Notably, not all of it! https://snarky.ca/why-python-3-exists/

Many changes are to make the language more

modern, more efficient, and more consistent

Good example is the print statement

https://snarky.ca/why-python-3-exists/

https://python-future.org/compatible_idioms.html

https://python-future.org/compatible_idioms.html

How many years do you think it was between

Python 3 starting and Python 2 being “sunset” (i.e.

no longer supported in favor of Python 3)?

A. 2 years

B. 4 years

C. 10 years

D. 14 years

E.Something else
19

It took 14 YEARS to transition to Python 3

Actual

Python 2

Sunset

Python 2

Released

2000 2006 2008 2015 2020

Original

Sunset

Deadline

Python 3

Began

Announced

original

sunset

https://www.python.org/doc/sunset-python-2/

https://www.python.org/doc/sunset-python-2/

So, why do we have the languages we have?

• Languages, once heavily adopted, are hard to get rid of
• Fortran had a stable release in 2023!
• Still used heavily in applied mathematics, to my

knowledge

• Many languages we have fundamentally changed the
language landscape (e.g., C)

• Many of the languages that exist, but are not used, were
middle steps, did not get adopted, etc.

• HOPL PDF is strong evidence of how many languages
exist versus how many languages we know

Wrap up

Why learn this material?

“The best preparation for quickly learning and effectively using new languages is

understanding the fundamentals underlying all programming languages

and to have some prior experience with a variety of computational models.

Such knowledge will endure longer than today’s “hot” languages, which will

undoubtedly become obsolete and give way to new languages in the future.

In addition, this knowledge will enable students to quickly look beyond an

unfamiliar language’s surface-level details (such as syntax) and grasp the

underlying computational model’s design principles.”

Why Undergraduates Should Learn the Principles of Programming Languages. ACM SIGPLAN Education Board. 2010.

http://www.cs.williams.edu/~freund/cs334/static/auxread/why/why.pdf

Molly’s Hypothesis

Learning functional programming and programming

languages concepts makes you a better programmer.

Period.

Turn to your neighbor and discuss the following question:

What is your favorite punctuation mark?

2

5

Do you have strong feelings about parentheses?

2

6

A.Yes

B.No

C.I still don’t get this attempt at a joke

Summary of this semester’s topics
No expected knowledge of functional programming → writing an

interpreter for MiniScheme

Key takeaways from the course

• Recursion!

• Functional programming

• accumulators

• tail recursion
• Higher-order functions (map, filter, foldl, foldr)

• Parsing and interpreting a language

• Lambda calculus

Things to remember
• Never write a loop when you can just map!

• Programming languages are built by people

• Design is a choice

• There are fundamental building blocks

• Elements of building an Interpreter

• Concrete vs. Abstract Syntax

• Parsing

• Interpreting

• Evaluation order

• Scope

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Practical Concerns
	Slide 6: Why do we have the languages we have?
	Slide 7: What is your preferred single line comment symbol?
	Slide 8: Language & Hardware Coupling
	Slide 9: A (Very) Short History
	Slide 10: Language & Hardware Coupling
	Slide 11: How do languages evolve?
	Slide 12: The real question answered: Why is it called C?
	Slide 13: Some Folks Have Tried to Graph This
	Slide 14: Let’s say I want to print out the string that contains hello world. How do I do that in Python?
	Slide 15: Even if it’s the same language, it changes
	Slide 16: Big Changes to Existing Languages
	Slide 17: Python 2 to Python 3
	Slide 18
	Slide 19: How many years do you think it was between Python 3 starting and Python 2 being “sunset” (i.e. no longer supported in favor of Python 3)?
	Slide 20: It took 14 YEARS to transition to Python 3
	Slide 21: So, why do we have the languages we have?
	Slide 22: Wrap up
	Slide 23: Why learn this material?
	Slide 24: Molly’s Hypothesis
	Slide 25: Turn to your neighbor and discuss the following question: What is your favorite punctuation mark?
	Slide 26: Do you have strong feelings about parentheses?
	Slide 27: Summary of this semester’s topics
	Slide 28: Things to remember

