
CSCI 275:
Programming Abstractions

Stephen Checkoway

Slides from Molly Q Feldman

Lecture 35: Practical Concerns

Fall 2024

Questions?

Functional Language of the Week: Erlang

3

Started in the 1980s by the Swedish telecom company Ericsson

Equipped with its own runtime system to help support telecom

operations (i.e. fast transactions!)

“Some of its uses are in telecoms, banking, e-commerce,

computer telephony and instant messaging. Erlang's runtime

system has built-in support for concurrency, distribution and

fault tolerance.” from the Erlang homepage

At the language level there is support to make sure that if

one system component breaks, the code does not stop

running

Functional Language of the Week: Erlang

%% Immutable variables

> Fruits = ["banana","monkey","jungle"].

%% Map values using stdlib functions

> lists:map(fun string:uppercase/1, Fruits).

%% Fold over lists using custom functions

> lists:foldl(fun(Str, Cnt) ->

string:length(Str) + Cnt end, 0, Fruits).

18

https://www.erlang.org/

Yes, Erlang ends all

expressions with

periods!

https://www.erlang.org/

Practical Concerns

Partial answers to three big questions:

(1) What PL should I learn for what task?

(1) Why do we make new ones?

(1) Why do we have the languages that we have?

I’ll give you my (and others’) opinions on these! Not definitive, but hopefully
fun/interesting. Also, I’ll hopefully provide some helpful links.

Whirlwind Core Language Tour

Python

• The language we teach in CSCI 150

• #1 Language on the TIOBE Index

• Lots of use cases: scripting, objects, functions,

dynamically typed

• The language we teach in CSCI 151

• #3. Language on the TIOBE Index

• Statically typed, object-oriented, cross-platform JVM

Java

JavaScript • Not part of our standing curriculum!

• #6 Language on the TIOBE Index

• Dynamically typed, event-based,

powers most of the internet

Which language for which task?

Which of these languages is your preferred

language out of those we teach in the department?

A.Python

B.Java

C.Racket

D.Rust

E.Something else

11

12

Think about why you like to use those languages

Syntax?

Familiarity?

Use cases?

Libraries?

Ease of use?

Something else?

Prof. Molly’s recommendation - based on
conversations with other professors &
professional developers!

Python

JavaScript (TypeScript)

Pick your OOP of Choice -

Java mostly

But there is no “one size fits all” answer

https://w3techs.com/technologies/overview/client_side_language

Most people would suggest that JavaScript is THE web

programming language to learn.

Yet what about types? TypeScript.

Shopify (powers a huge number of web transactions) and

Twitch are all written in Ruby on Rails

https://w3techs.com/technologies/overview/client_side_language

So, what options do you have when choosing
a language?

Option #1: What you know!

Sometimes, for your own personal projects or for your own small
applications, just using the language you know is probably the
best idea!

Prof. Molly’s Personal Anecdote: My first programming language
was Python and it’s the language I “reach for” the most

Steve’s: Python was my 6th programming language and also the
one I choose first: right up until it becomes complex and then I
want types so I use Rust

Option #2: Application

You can use the general type of what you’re

building to help!

Writing a quick script?

Maybe use Python or Bash!

Building a website?

Maybe use JavaScript!

Writing something that needs to be

fast? Maybe use C or Rust!

Really specific application?

Make your own domain-

specific language!

Please don’t use C if

you can help it

Aside: Libraries Are Great, Use Them In the
Real World

A lot of code you will/want to write is not new, in that

someone has written it before!

Sometimes finding a good library / API / etc. can

make the difference between picking Language A

versus Language B
And now we are

officially talking software

engineering!

Option #3: Paradigm

Programming paradigms are the (loose) categories that

different languages can fall under. Some (common)

options include:

• Functional

• Object-Oriented

• Logic

• Imperative

Racket

Java

Python

Prolog

Paradigms Can Cause Unproductive
Boundaries

What paradigm is Python really?

“Languages do not organize into hierarchical taxonomies the

way plants and animals do; they are artificial entities that can

freely be bred across supposed boundaries. Language

authors can pick from several different bins when creating

languages, and indeed modern mainstream languages are

usually a mélange of many of these bins.” – Krishnamurthi &

Fisler

For an interesting perspective on the impact this can have in education:

https://cs.brown.edu/~sk/Publications/Papers/Published/kf-prog-paradigms-and-beyond/paper.pdf

https://cs.brown.edu/~sk/Publications/Papers/Published/kf-prog-paradigms-and-beyond/paper.pdf

Option #4: Look around you

• Look at what other companies, engineers, etc. are doing

in your particular area!

• I see this with frameworks a lot and “X as a Service”

technologies (https://github.blog/2023-11-08-the-state-

of-open-source-and-ai/#the-most-popular-programming-

languages)

• Job Ads, Github statistics, TIOBE, social, etc.
https://www.technologyreview.com/2015/04/02/168469/toolkits-for-the-mind/

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://www.technologyreview.com/2015/04/02/168469/toolkits-for-the-mind/

Have you learned a programming language outside

of the classroom?

A.Yes, as part of a job or internship

B.Yes, for fun!

C.Both A & B

D.Not yet!

22

Option #5: You don’t get to choose!

Learning programming languages is a skill that gets easier

over time

Many folks do not know a certain language (but do know

CS fundamentals!) and learn a new language on the job

The more kinds of languages you have exposure to, the

easier to learn a new language in my opinion

Why it’s good to learn Racket!

Aside: Real World Applications of Racket?

The Scribble Documentation Tool: https://docs.racket-lang.org/scribble/

Racket Con features talks from a variety of speakers over the years!

https://con.racket-lang.org/

Former topics are:

• Academic projects on Types

• Web programming

• Game programming

https://docs.racket-lang.org/scribble/
https://con.racket-lang.org/

Why do we make more
languages?

Why do you think we make more languages?

26

A lot of our “Functional Programming
Languages of the Week” have been “new”
languages
What narratives do they share in common?

• X + Y = Z and Z is therefore cooler/more usable/etc.

• A “new” version of an older language

• Simply adding functional features to existing

languages
Note there is a difference between versions of a

language and an entirely new language – this line

is blurry though (e.g. Racket was a Scheme

variant until it wasn’t) https://www2.ccs.neu.edu/racket/pubs/manifesto.pdf

https://www2.ccs.neu.edu/racket/pubs/manifesto.pdf

BASIC – “Beginner’s All Purpose Symbolic
Instruction Code” (1964)

Initiative to help non-STEM students learn to program from

Dartmouth College in 1964
• BASIC was designed in the context of time-sharing mainframes

“I tried, briefly, to develop simple subsets of Fortran and ALGOL,

but found quickly that such could not be done” (Kurtz in Time)

Harry McCraken. "Fifty Years of BASIC, the Programming Language That Made Computers

Personal". Time. April 29, 2014.

Pascal (1971)

“The development of the language Pascal is based on two
principal aims. The first is to make available a language
suitable to teach programming as a systematic discipline
based on certain fundamental concepts clearly and naturally
reflected by the language. The second is to develop
implementations of this language which are both
reliable and efficient on presented available computers,
dispelling the commonly accepted notion that useful
languages must be either slow to compile or slow to
execute, and the belief that any nontrivial system is bound
to contain mistakes forever.”

Wirth, N. (1971). The programming language Pascal.
Acta informatica, 1(1), 35-63.

Rust

Started as a hobby project taking good features from old languages

Rust changed over time to simplify the language and became a great systems

programming language (fast, strong type system, great memory safety without

garbage collection)

Network Switch Languages

In the last decade, network switches – the devices which

receive and forward internet packets – have moved from

being hardware configurable to software configurable

This gave rise to programming language to control the

switches

Why new languages?

Domain-specific languages let us write code focused on

the problem domain (here: network packet routing)

Switches to make decisions about what to do with

incoming network packets quickly

A language restricted to this task can produce software or

hardware (e.g., programming FPGAs) to route packets

effeciently

https://github.com/ethereum/solidity

https://github.com/ethereum/solidity

P4

https://p4.org/

https://p4.org/

Language Design is like Puzzle Pieces

Language designers tend to be balancing many

different factors:

• Facilitating adoption (keywords, curly braces, etc.)

• Paradigm or “underlying functionality”

• Their motivation
• Application

• Feature (Research or what not)

• Other need

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions?
	Slide 3: Functional Language of the Week: Erlang
	Slide 4: Functional Language of the Week: Erlang
	Slide 5: Practical Concerns
	Slide 6: Whirlwind Core Language Tour
	Slide 7: Python
	Slide 8: Java
	Slide 9: JavaScript
	Slide 10: Which language for which task?
	Slide 11: Which of these languages is your preferred language out of those we teach in the department?
	Slide 12: Think about why you like to use those languages
	Slide 13: Prof. Molly’s recommendation - based on conversations with other professors & professional developers!
	Slide 14: But there is no “one size fits all” answer
	Slide 15: So, what options do you have when choosing a language?
	Slide 16: Option #1: What you know!
	Slide 17: Option #2: Application
	Slide 18: Aside: Libraries Are Great, Use Them In the Real World
	Slide 19: Option #3: Paradigm
	Slide 20: Paradigms Can Cause Unproductive Boundaries
	Slide 21: Option #4: Look around you
	Slide 22: Have you learned a programming language outside of the classroom?
	Slide 23: Option #5: You don’t get to choose!
	Slide 24: Aside: Real World Applications of Racket?
	Slide 25: Why do we make more languages?
	Slide 26: Why do you think we make more languages?
	Slide 27: A lot of our “Functional Programming Languages of the Week” have been “new” languages
	Slide 28: BASIC – “Beginner’s All Purpose Symbolic Instruction Code” (1964)
	Slide 29: Pascal (1971)
	Slide 30: Rust
	Slide 32: Network Switch Languages
	Slide 33: Why new languages?
	Slide 34: P4
	Slide 35: Language Design is like Puzzle Pieces

