CSCI 275:
Programming Abstractions

Lecture 34: The Y Combinator
Fall 2024

Stephen Checkoway 2 s
Slides from Molly Q Feldman

Motivation

How do we write a recursive function?

How do we write a recursive function?

Easy, use de

~1ne!

(define len

(Llambda (lst)

(cond

(empr
else

Cy? 1S
(addl

N

) O]

(Len

(res-

1 s

How do we write a recursive function?

Easy, use letrec!

(lLetrec (|len
(lambda
(cond

len)

(Lst)

(empty? 1lst) O]

else

(addl

(Len

Recall, that this binds 1en to our function (lambda

the letrec

(Llst)

(rest ls-

))) 1)) 1)

..) In the body of

This expression returns the procedure bound to 1en which computes the

length of its argument

Why does this not work to create a length procedure?
(let (|len

(Llambda (lst)
(cond [(empty? 1lst) O]
else (addl (len (res

. It would work but 1etrec more clearly conveys the programmer's
Intent to write a recursive procedure
B. len IS not defined Inside the 1ambda
. Len IS not defined In the last line
D. len Isn't being called in the last line, it's being returned and this Iis an

error
. None of the above

How did you feel about how we implemented 1letrec In
MiniScheme?

Replace

. . letrec ([fl expl] .. [fn expn
A. | liked it! ‘ S (pl] .. [fn expn])

B. It didn’t feel satisfying with

(let ([£1 0] .. [£n 01])

C. Definitely not a fan (let ([gl expl] .. [gn expn])
(begin

D. Something else (setl £l gl)

(set! £fn gn)

body)))

Today: a different way to think
about Implementing recursion
more generally!

Also a nice mix of the theory,
i implementation & parameter
2 passing stuff we've been talking
about!

How do we write a recursive function?

Let’s just use lambdas, no Racket special forms
(Llambda (lst)
(cond [(empty? 1st) O]
else (addl (2727?72 (rest 1st)))]))

How do we write a recursive function?

Let’s just use lambdas, no Racket special forms
(Llambda (lst)
(cond [(empty? 1st) O]
else (addl (2727?72 (rest 1st)))]))

Options for ?22?:

How do we write a recursive function?

Let’s just use lambdas, no Racket special forms

(lambda
(cond

(lst)

(empty? 1st) O]

else (addl (2?2?27 (rest 1st)))]))

Options for ?22?:

(Lambda (lst) (error

\\T

L1s-

too long!”))

(|

Issue: we get the right length for an empty list, but

this does not work for non-empty lists

How do we write a recursive function?

Let’s just use lambdas, no Racket special forms
(Llambda (lst)
(cond [(empty? 1st) O]
else (addl (2?2?27 (rest 1st)))]))

Options for ?22?:

(lambda (1lst)

AAAAAAAAAAAAN/

VwAAAAAASAANAANAAY

(rest 1st)))]))

How do we write a recursive function?

Let’s just use lambdas, no Racket special forms
(Lambda (lst)
(cond [(empty? 1lst) O]
else (addl (2?2?27 (rest 1st)))]))

Options for ?22?:

(lambda (len)
Wrap the code (lambda (lst)

above in a (lambda (cond [(empty? lst) 0]
(len) \ [else (addl (len (rest 1lst)))])))

Issue: This turns a “function” into an "argument™ — not
the functionality we really want

Progress towards what we want...
(define make-length m
(lLambda (len)

(cond [(empty? 1lst) O]
lelse (addl (len (rest 1st)))]))))

Same function as last slide, but bound to the identifier make-length
°* The (together with purple text) Is the body of make-length
°* The purple text Is the body of the closure returned by (make-length x)

Progress towards what we want...

(define make-length
(lLambda (len)

(cond [(empty? 1lst) O]
lelse (addl (len (rest 1st)))]))))

Same function as last slide, but bound to the identifier make-length

°* The (together with purple text) Is the body of make-length
°* The purple text Is the body of the closure returned by (make-length x)

(define LO (make-length (lambda (lst) (error "too long"))))
L.O correctly computes the length of the empty list but fails on longer lists

(define make-length
(lambda (len)

r S, S sl g =
| "

I\/Iany make-length EM(W [(éfnpty? lst) 0]
definitions [else (addl (len (rest 1lst)))]))))

(define LO (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length LO)) ;works for <= 1 element lists

If we have the definitions below, how can we define a new procedure
.3 that correctly calculates the length for lists of length 3 or less?

(define make-length

(lambda (len)

. _ (lambda (lst)

(lambda (lst) (error "to [else (addl (len (rest lst)))]))))

(define L1 (make—-length LO))

fine L3 (make-length L1))

fine L3 (make-length (make-length L1))

fine L3 (make-length 3))

D. Something else

Many make-length

definitions

(define LO (make-length (lambda (lst)
(define L1 (make-length LO)) ;works
(define LZ (make-length L1)) ;works
(define L3 (make-length LZ2)) ;works

(define make-length

(lambda (len)

(cond [(empty? lst) 0]

[else (addl (len (rest 1lst)))]))))

for <= 2 el

<=1 e._

ement
ement

Insight: we'd need an L., in order to work for all lists

(error "too long"))))

li1sts

lists
for <= 3 element 1lists

We need a function on functions

fine

fine
fine
fine

LO

L1l
L2
L3

(make—-length (lambda (lst)
(make—-length L0O)) ;works
(make-length Ll1)) ;works
(make—-length L2)) ;works

In all the LN cases, make-length

and L (N-1)

are both functions

for <= 1 e

lement

for <= 2 e.

ement

(error "too long"))))

lists

lists
for <= 3 element lists

Some Definitions

Combinator: a function that operates on functions

Fixed-point (same as in math): a value that does not change
under a given transformation

To solve our “pure” recursion problem we are going to use a
term called a fixed-point combinator

It produces a fixed point because we want it to simply "keep

returning” its argument

Enter: the Y Combinator

If £Is a function of one argument, then (Y

Fh
S
|
NN

)
NN
e
Fh
S
S

(Y make—-length)
=> (make-length (Y make-length))
> (lambda (lst)
(cond [(empty? 1lst) O]
else (addl ((Y make—-length) (rest 1st)))]))

This Is precisely the length function!
(define length (Y make-length))

How IS (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length functionto ' (1 2 3)

(lLength '"(1 2 3)) ; SO lst 1s bound to '(1 2 3)

=> (cond [(empty? 1lst) O]

else (addl ((Y make-length) (rest 1lst)))])

=> (addl (length "(2 3)))

=> (addl (cond [(empty? 1lst) O]

else (addl ((Y make-length) (rest 1lst)))]))

=> (addl (addl (length '(3))))
=> (addl (addl (cond [..][else (addl ..)])))
=> (addl (addl (addl (length "()))))
> (addl (addl (addl (cond [(empty? 1st) O] [..]1))))
=> (addl (addl (addl 0)))
=> 3

Um... what exactly is the definition of Y?

When we Introduced Y, we said:
“If £1s a function of one argument, then (Y f) = (£ (Y £))”

TWO ISSuUes:

1. We define Y In terms of Y — wasn't the whole point to write
recursive anonymous functions?

2.1f (Y £) = (£ (Y f)), then
(£ (Y £)) = (£ (£ (Y £)) = (£ (£ (£ (Y £)))) =

and this will never end

Y

Definition of the Y Combinator

fact

(t)

= (A

)

ﬁ

(L)

) (A

fact

(L)

g

(L)

(£ £

Y fact =

(£ £)) (A |

So If we pass through some function

(£ £))

fact

T)

e

(£ L

Fact, we get

(Y fact)

x) ? l.e.Y applied to the identity.

(£ £)) (A (£) t (£ £)))

D.Y T)

E. Something else

Aside: Omega

Q= (A (X)) X X) (A (X)) X xX)

What Is Interesting about Q Is that, when we try to reduce
It, we still just get Q:

A (x)
A (x)

(2

X
X

(
(
Q

—>

Y In Racket

(define Y
(lambda (t)
((Llambda (£) (t (£ £)))
(lambda (£) (t (£ £))))))

Y IS a function of t and its body is applying the anonymous function (1lambda
(f) (& (£ £))) tothe argument (lambda (f) (t (£ £))) and
returning the resuilt.

(Y foo) = ((Llambda (f£) (foo (£ £)))
(lambda (f) (foo (£ £))))
= (foo ((lambda (f£) (foo (£ £)))
(lambda (f£) (foo (f £)))))

NN

foo (Y foo))

Issue: The Y Combinator for Racket

This form of the Y-combinator doesn't work in Racket because
the computation would never end ("CBV divergence problem™)

We can fix this by using the related Z-combinator

(deflne Z
(lambda (t)

(
(lambda (f) (t (lambda (v) ((f L)

Now a value, so don't try to unroll

the whole recursion!

With this definition, we can create a length function
(define length (Z make-length))

Gulide to Using Z Yourself!

1. Write your recursive function normally with recursive calls:
(define foo (lambda (x) ..))

2. Wrap the lambda in another, single-argument lambda whose

argument has the same name as your function:
(define foo (lambda (foo) (lambda (x) ..)))

3. Apply Z to that
(define foo (Z (lambda (foo) (lambda (x) ...))))

4. Recursion without special forms, achieved!

What about multi-argument functions?

We can use apply!

args here are the
arguments to the

(define 2zZ*
(lambda (t) recursive function that
(we are trying to write

(Lambda (f) (t

(lambda args (apply (£ £) args)))))))

Example: combinator map

((2%
(Lambda (proc 1lst)
(cond [(empty? 1lst) empty]
else (cons (proc (first 1st))

addl

(1 2 3 4 5))
We're applying z* to the which returns a recursive map
procedure

Then we're applying that procedure to the arguments addl and
"(1 2 3 4 5)

	Slide 1
	Slide 2: Motivation
	Slide 3: How do we write a recursive function?
	Slide 4: How do we write a recursive function?
	Slide 5: How do we write a recursive function?
	Slide 6: Why does this not work to create a length procedure? (let ([len (lambda (lst) (cond [(empty? lst) 0] [else (add1 (len (rest lst)))]))]) len)
	Slide 7: How did you feel about how we implemented letrec in MiniScheme?
	Slide 8: How did you feel about how we implemented letrec in MiniScheme?
	Slide 9: How do we write a recursive function?
	Slide 10: How do we write a recursive function?
	Slide 11: How do we write a recursive function?
	Slide 12: How do we write a recursive function?
	Slide 13: How do we write a recursive function?
	Slide 14: Progress towards what we want…
	Slide 15: Progress towards what we want…
	Slide 16: Many make-length definitions
	Slide 17: If we have the definitions below, how can we define a new procedure L3 that correctly calculates the length for lists of length 3 or less? (define L0 (make-length (lambda (lst) (error "too long")))) (define L1 (make-length L0))
	Slide 18: Many make-length definitions
	Slide 19: We need a function on functions
	Slide 20: Some Definitions
	Slide 21: Enter: the Y Combinator
	Slide 22: How is (Y make-length) the same as length?
	Slide 23: Um… what exactly is the definition of Y?
	Slide 24: Definition of the Y Combinator
	Slide 25: What is Y (λ (x) x)? i.e. Y applied to the identity. Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))
	Slide 26: Aside: Omega
	Slide 28: Y in Racket
	Slide 29: Issue: The Y Combinator for Racket
	Slide 31: Guide to Using Z Yourself!
	Slide 32: What about multi-argument functions?
	Slide 33: Example: combinator map

