
CSCI 275:
Programming Abstractions

Stephen Checkoway

Slides from Molly Q Feldman

Lecture 34: The Y Combinator

Fall 2024

Motivation

How do we write a recursive function?

How do we write a recursive function?

Easy, use define!

(define len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))])))

How do we write a recursive function?
Easy, use letrec!

(letrec ([len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))])

len)

Recall, that this binds len to our function (lambda (lst) …) in the body of

the letrec

This expression returns the procedure bound to len which computes the

length of its argument

Why does this not work to create a length procedure?
(let ([len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))])

len)

A. It would work but letrec more clearly conveys the programmer's

intent to write a recursive procedure
B.len is not defined inside the lambda

C.len is not defined in the last line

D.len isn't being called in the last line, it's being returned and this is an

error

E. None of the above

How did you feel about how we implemented letrec in

MiniScheme?

A. I liked it!

B. It didn’t feel satisfying

C. Definitely not a fan

D. Something else

How did you feel about how we implemented letrec in

MiniScheme?

A. I liked it!

B. It didn’t feel satisfying

C. Definitely not a fan

D. Something else

Today: a different way to think

about implementing recursion

more generally!

Also a nice mix of the theory,

implementation & parameter

passing stuff we’ve been talking

about!

How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (lst) (error “List too long!”))

Issue: we get the right length for an empty list, but

this does not work for non-empty lists

How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (lst) (error “List too long!”))

Issue: we get the right length for an empty list, but

this does not work for non-empty lists

How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

Another copy of

the function

itself?

Issue: we get the right length for an empty and single

element list, but still doesn’t work in general

How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

Issue: This turns a “function” into an “argument” – not

the functionality we really want

Wrap the code

above in a (lambda

(len) …)

Progress towards what we want…

(define make-length

(lambda (len)

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))))

Same function as last slide, but bound to the identifier make-length

• The orange text (together with purple text) is the body of make-length

• The purple text is the body of the closure returned by (make-length x)

Currying!

Progress towards what we want…

(define make-length

(lambda (len)

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))))

Same function as last slide, but bound to the identifier make-length

• The orange text (together with purple text) is the body of make-length

• The purple text is the body of the closure returned by (make-length x)

(define L0 (make-length (lambda (lst) (error "too long"))))

L0 correctly computes the length of the empty list but fails on longer lists

(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

Many make-length
definitions

If we have the definitions below, how can we define a new procedure
L3 that correctly calculates the length for lists of length 3 or less?

(define L0 (make-length

(lambda (lst) (error "too long"))))

(define L1 (make-length L0))

A. (define L3 (make-length L1))

B. (define L3 (make-length (make-length L1))

C. (define L3 (make-length 3))

D. Something else
17

(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

(define L2 (make-length L1)) ;works for <= 2 element lists

(define L3 (make-length L2)) ;works for <= 3 element lists

Insight: we’d need an L∞ in order to work for all lists

Many make-length
definitions

(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

(define L2 (make-length L1)) ;works for <= 2 element lists

(define L3 (make-length L2)) ;works for <= 3 element lists

We need a function on functions

In all the LN cases, make-length

and L(N-1) are both functions

Some Definitions

Combinator: a function that operates on functions

Fixed-point (same as in math): a value that does not change

under a given transformation

To solve our “pure” recursion problem we are going to use a

term called a fixed-point combinator

It produces a fixed point because we want it to simply “keep

returning” its argument

Enter: the Y Combinator

If f is a function of one argument, then (Y f) = (f (Y f))

(Y make-length)

=> (make-length (Y make-length))

=> (lambda (lst)

(cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))]))

This is precisely the length function!
(define length (Y make-length))

How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)) ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3)))

=> (add1 (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3))))

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '()))))

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

=> (add1 (add1 (add1 0)))

=> 3

Um… what exactly is the definition of Y?
When we introduced Y, we said:
“If f is a function of one argument, then (Y f) = (f (Y f))”

Two issues:

1. We define Y in terms of Y – wasn’t the whole point to write

recursive anonymous functions?

2. If (Y f) = (f (Y f)), then

(f (Y f)) = (f (f (Y f)) = (f (f (f (Y f)))) =

…

and this will never end

Definition of the Y Combinator

Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))

So if we pass through some function fact, we get

Y fact = (λ (t) (λ (f) t (f f)) (λ (f) t (f f))) fact

-> (λ (f) fact (f f)) (λ (f) fact (f f))

-> fact ((λ (f) fact (f f)) (λ (f) fact (f f)))

Y fact = fact (Y fact)

What is Y (λ (x) x)? i.e. Y applied to the identity.

Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))

A.(λ (f) f f) (λ (f) f f)

B.(λ (f) f f)

C.(λ (f) f)

D.Y (λ (f) f)

E. Something else

Aside: Omega

2

6

Ω = (λ (x) x x) (λ (x) x x)

What is interesting about Ω is that, when we try to reduce

it, we still just get Ω:

Ω = (𝜆 (𝑥) 𝑥 𝑥) (𝜆 (𝑥) 𝑥 𝑥)
→ (𝜆 (𝑥) 𝑥 𝑥) (𝜆 (𝑥) 𝑥 𝑥)
= Ω

Y in Racket
(define Y

(lambda (t)

((lambda (f) (t (f f)))

(lambda (f) (t (f f))))))

Y is a function of t and its body is applying the anonymous function (lambda

(f) (t (f f))) to the argument (lambda (f) (t (f f))) and

returning the result.

(Y foo) = ((lambda (f) (foo (f f)))

(lambda (f) (foo (f f))))

= (foo ((lambda (f) (foo (f f)))

(lambda (f) (foo (f f)))))

= (foo (Y foo))

Issue: The Y Combinator for Racket

This form of the Y-combinator doesn't work in Racket because

the computation would never end (“CBV divergence problem”)

We can fix this by using the related Z-combinator

(define Z

(lambda (t)

((lambda (f) (t (lambda (v) ((f f) v))))

(lambda (f) (t (lambda (v) ((f f) v)))))))

With this definition, we can create a length function
(define length (Z make-length))

Now a value, so don’t try to unroll

the whole recursion!

Guide to Using Z Yourself!

1. Write your recursive function normally with recursive calls:
(define foo (lambda (x) …))

2. Wrap the lambda in another, single-argument lambda whose

argument has the same name as your function:
(define foo (lambda (foo) (lambda (x) …)))

3. Apply Z to that
(define foo (Z (lambda (foo) (lambda (x) ...))))

4. Recursion without special forms, achieved!

What about multi-argument functions?

We can use apply!

(define Z*

(lambda (t)

((lambda (f) (t

(lambda args (apply (f f) args))))

(lambda (f) (t

(lambda args (apply (f f) args)))))))

args here are the

arguments to the

recursive function that

we are trying to write

Example: combinator map
((Z* (lambda (map)

(lambda (proc lst)

(cond [(empty? lst) empty]

[else (cons (proc (first lst))

(map proc (rest lst)))]))))

add1

'(1 2 3 4 5))

We're applying Z* to the orange function which returns a recursive map

procedure

Then we're applying that procedure to the arguments add1 and

'(1 2 3 4 5)

	Slide 1
	Slide 2: Motivation
	Slide 3: How do we write a recursive function?
	Slide 4: How do we write a recursive function?
	Slide 5: How do we write a recursive function?
	Slide 6: Why does this not work to create a length procedure? (let ([len (lambda (lst) (cond [(empty? lst) 0] [else (add1 (len (rest lst)))]))]) len)
	Slide 7: How did you feel about how we implemented letrec in MiniScheme?
	Slide 8: How did you feel about how we implemented letrec in MiniScheme?
	Slide 9: How do we write a recursive function?
	Slide 10: How do we write a recursive function?
	Slide 11: How do we write a recursive function?
	Slide 12: How do we write a recursive function?
	Slide 13: How do we write a recursive function?
	Slide 14: Progress towards what we want…
	Slide 15: Progress towards what we want…
	Slide 16: Many make-length definitions
	Slide 17: If we have the definitions below, how can we define a new procedure L3 that correctly calculates the length for lists of length 3 or less? (define L0 (make-length (lambda (lst) (error "too long")))) (define L1 (make-length L0))
	Slide 18: Many make-length definitions
	Slide 19: We need a function on functions
	Slide 20: Some Definitions
	Slide 21: Enter: the Y Combinator
	Slide 22: How is (Y make-length) the same as length?
	Slide 23: Um… what exactly is the definition of Y?
	Slide 24: Definition of the Y Combinator
	Slide 25: What is Y (λ (x) x)? i.e. Y applied to the identity. Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))
	Slide 26: Aside: Omega
	Slide 28: Y in Racket
	Slide 29: Issue: The Y Combinator for Racket
	Slide 31: Guide to Using Z Yourself!
	Slide 32: What about multi-argument functions?
	Slide 33: Example: combinator map

