CSCI 275: Programming Abstractions Lecture 34: The Y Combinator Fall 2024

Stephen Checkoway Slides from Molly Q Feldman

Motivation

How do we write a recursive function?

How do we write a recursive function? Easy, use define! (define len (lambda (lst) (cond [(empty? lst) 0] [else (add1 (len (rest lst)))])))

How do we write a recursive function? Easy, use letrec!

len)

Recall, that this binds len to our fun the letrec

This expression returns the procedure bound to len which computes the length of its argument

Recall, that this binds len to our function (lambda (lst) ...) in the body of

Why does this not work to create a length procedure? (let ([len (lambda (lst) (cond [(empty? lst) 0] [else (add1 (len (rest lst)))]))

len)

intent to write a recursive procedure

- B.len is not defined inside the lambda
- C.len is not defined in the last line
- error
- E. None of the above

A. It would work but letrec more clearly conveys the programmer's

D.len isn't being called in the last line, it's being returned and this is an

How did you feel about how we implemented letrec in MiniScheme?

- A. I liked it!
- B. It didn't feel satisfying
- C. Definitely not a fan
- D. Something else

Replace

(letrec ([f1 exp1] ... [fn expn]) body)

with

(let ([f1 0] ... [fn 0]) (let ([g1 exp1] ... [gn expn]) (begin (set! f1 g1) (set! <u>fn gn</u>) body)))

How di MiniSc Today: a *different* way to think about implementing recursion more generally! A. I like

B. It Also a nice mix of the theory, C. D implementation & parameter passing stuff we've been talking D. S about!

([nqx

expn

How do we write a recursive function? Let's just use lambdas, no Racket special forms (lambda (lst) (cond [(empty? lst) 0] [else (add1 (??? (rest lst)))]))

How do we write a recursive function? Let's just use lambdas, no Racket special forms (lambda (lst) (cond [(empty? lst) 0] [else (add1 (??? (rest lst)))]))

Options for ???:

How do we write a recursive function? Let's just use lambdas, no Racket special forms (lambda (lst) (cond [(empty? lst) 0] [else (add1 (??? (rest lst)))]))

Options for ???:

Issue: we get the right length for an empty list, but this does not work for non-empty lists

(lambda (lst) (error "List too long!"))

How do we write a recursive function? Let's just use lambdas, no Racket special forms (lambda (lst) (cond [(empty? lst) 0] [else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (lst) Another copy of (cond (empty? 1st) 0] the function itself?

Issue: we get the right length for an empty and single element list, but still doesn't work in general

```
[else (add1 ((lambda (lst)
               (cond [(empty? lst) 0]
                     [else (add1 (??? (rest lst)))]))
             (rest lst)))]))
```


How do we write a recursive function? Let's just use lambdas, no Racket special forms (lambda (lst) (cond [(empty? lst) 0] [else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (<u>len</u>) (lambda (lst) Wrap the code

above in a (lambda (len) ...)

- (cond [(empty? lst) 0] [else (add1 (len (rest lst)))]))

Issue: This turns a "function" into an "argument" – not the functionality we really want

Progress towards what we want...

(define make-length

(lambda (len) (lambda (lst)

(cond [(empty? lst) 0]

Same function as last slide, but bound to the identifier make-length

- The orange text (together with purple text) is the body of make-length

Currying!

[else (add1 (len (rest lst)))])))

• The purple text is the body of the closure returned by (make-length x)

Progress towards what we want...

(define make-length (lambda (len) (lambda (lst) (cond [(empty? lst) 0]

Same function as last slide, but bound to the identifier make-length

- The orange text (together with purple text) is the body of make-length

(define L0 (make-length (lambda (lst) (error "too long")))) LO correctly computes the length of the empty list but fails on longer lists

[else (add1 (len (rest lst)))])))

• The purple text is the body of the closure returned by (make-length x)

(lambda (len) Many make-length definitions

(define L1 (make-length L0)) ;works for <= 1 element lists

(define make-length

- (lambda (lst)
- (cond [(empty? lst) 0] [else (add1 (len (rest lst)))])))
- (define L0 (make-length (lambda (lst) (error "too long"))))

If we have the definitions below, how can we define a new procedure L3 that correctly calculates the length for lists of length 3 or less?

(define L0 (make-length (lambda (lst) (error "to

(define L1 (make-length L0))

A. (define L3 (make-length L1))

B. (define L3 (make-length (make-length L1))

C. (define L3 (make-length 3))

D. Something else

```
(define make-length
  (lambda (len)
    (lambda (lst)
      (cond [(empty? lst) 0]
           [else (add1 (len (rest lst)))])))
```

(lambda (len) Many make-length definitions

- (define L1 (make-length L0)) ;works for <= 1 element lists
- (define L2 (make-length L1)) ; works for <= 2 element lists
- (define L3 (make-length L2)) ;works for <= 3 element lists

(define make-length

- (lambda (lst)
 - (cond [(empty? lst) 0] [else (add1 (len (rest lst)))])))
- (define L0 (make-length (lambda (lst) (error "too long"))))

Insight: we'd need an L_{∞} in order to work for all lists

We need a function on functions

(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ; works for <= 1 element lists (define L2 (make-length L1)) ; works for <= 2 element lists (define L3_(make-length L2)) ;works for <= 3 element lists

> In all the LN cases, make-length and L(N-1) are both functions

Some Definitions

Combinator: a function that operates on functions

under a given transformation

To solve our "pure" recursion problem we are going to use a term called a fixed-point combinator

Fixed-point (same as in math): a value that does not change

It produces a fixed point because we want it to simply "keep returning" its argument

Enter: the Y Combinator

If f is a function of one argument, then (Y f) = (f (Y f))

- (Y make-length)
- => (make-length (Y make-length))
- => (lambda (lst) (cond [(empty? lst) 0]

This is precisely the length function! (define length (Y make-length))

[else (add1 ((Y make-length) (rest lst)))]))

How is (Y make-length) the same as length? (define length (Y make-length)) Let's step through applying our length function to $(1 \ 2 \ 3)$ (length '(1 2 3)) ; so lst is bound to '(1 2 3) => (cond [(empty? lst) 0] [else (add1 ((Y make-length) (rest lst)))]) => (add1 (length '(2 3))) => (add1 (cond [(empty? lst) 0] [else (add1 ((Y make-length) (rest lst)))])) => (add1 (add1 (length '(3))) => (add1 (add1 (cond [...][else (add1 ...)]))) => (add1 (add1 (length '()))) => (add1 (add1 (cond [(empty? lst) 0][...]))) => (add1 (add1 (add1 0))) => 3

Um... what exactly is the definition of Y? "If f is a function of one argument, then (Y f) = (f (Y f))"

When we introduced Y, we said:

Two issues:

 $\bullet \bullet \bullet$

- 1. We define Y in terms of Y wasn't the whole point to write recursive anonymous functions?
- 2. If (Y f) = (f (Y f)), then

and this will never end

(f (Y f)) = (f (f (Y f)) = (f (f (Y f))) =

Definition of the Y Combinator $Y = (\lambda (t) (\lambda (f) t (f f)) (\lambda (f) t (f f)))$ So if we pass through some function fact, we get Y fact = $(\lambda (t) (\lambda (f) t (f f)) (\lambda (f) t (f f)))$ fact \rightarrow (λ (f) fact (f f)) (λ (f) fact (f f)) \rightarrow fact ((λ (f) fact (f f)) (λ (f) fact (f f)))

Y fact = fact (Y fact)

 $Y = (\lambda (t) (\lambda (f) t (f f)) (\lambda (f) t (f f)))$

Aside: Omega

$\Omega = (\lambda (x) x x) (\lambda (x) x x)$

it, we still just get Ω :

 $\Omega = (\lambda (x) x x) (\lambda (x) x x)$ $\rightarrow (\lambda (x) x x) (\lambda (x) x x)$ $= \Omega$

What is interesting about Ω is that, when we try to reduce

Y in Racket

(define Y (lambda (t) ((lambda (f) (t (f f))))(lambda (f) (t (f f)))))

returning the result.

(Y foo) = ((lambda (f) (foo (f f)))(lambda (f) (foo (f f)))) = (foo ((lambda (f) (foo (f f))))(lambda (f) (foo (f f)))) = (foo (Y foo))

- Y is a function of t and its body is applying the anonymous function (lambda) (f) (t (f f))) to the argument (lambda (f) (t (f f))) and

Issue: The Y Combinator for Racket

This form of the Y-combinator doesn't work in Racket because the computation would never end ("CBV divergence problem")

We can fix this by using the related Z-combinator

(define Z
 (lambda (t)
 ((lambda (f) (t (lambda (f) (t

With this definition, we can create a length function (define length (Z make-length))

Now a value, so don't try to unroll the whole recursion!

((lambda (f) (t (lambda (v) ((f f) v)))) (lambda (f) (t (lambda (v) ((f f) v))))))

Guide to Using Z Yourself!

- 1. Write your recursive function normally with recursive calls: (define foo (lambda (x) ...))
- 2. Wrap the lambda in another, single-argument lambda whose argument has the same name as your function: (define foo (lambda (foo) (lambda (x) ...)))
- 3. Apply Z to that (define foo (Z (lambda (foo) (lambda (x) ...)))
- 4. Recursion without special forms, achieved!

What about multi-argument functions?

We can use apply!

(define Z*
 (lambda (t)
 ((lambda (f) (t
 (lambda args (apply (f f) args))))
 (lambda (f) (t

(lambda args (apply (f f) args)))))))

Example: combinator map

((Z* (lambda (map) (lambda (proc lst) (cond [(empty? lst) empty]

add1 '(1 2 3 4 5))

procedure

Then we're applying that procedure to the arguments add1 and $(1 \ 2 \ 3 \ 4 \ 5)$

[else (cons (proc (first lst)) (map proc (rest lst)))))))

We're applying Z* to the orange function which returns a recursive map