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Motivation



How do we write a recursive function?



How do we write a recursive function?

Easy, use define!

(define len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))])))



How do we write a recursive function?
Easy, use letrec!

(letrec ([len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))])

len)

Recall, that this binds len to our function (lambda (lst) …) in the body of 

the letrec

This expression returns the procedure bound to len which computes the 

length of its argument



Why does this not work to create a length procedure? 
(let ([len

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))])

len)

A. It would work but letrec more clearly conveys the programmer's 

intent to write a recursive procedure
B.len is not defined inside the lambda

C.len is not defined in the last line

D.len isn't being called in the last line, it's being returned and this is an 

error

E. None of the above



How did you feel about how we implemented letrec in 

MiniScheme?

A. I liked it! 

B. It didn’t feel satisfying

C. Definitely not a fan

D. Something else



How did you feel about how we implemented letrec in 

MiniScheme?

A. I liked it! 

B. It didn’t feel satisfying

C. Definitely not a fan

D. Something else

Today: a different way to think 

about implementing recursion 

more generally!

Also a nice mix of the theory, 

implementation & parameter 

passing stuff we’ve been talking 

about!



How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))



How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (lst) (error “List too long!”))

Issue: we get the right length for an empty list, but 

this does not work for non-empty lists



How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

(lambda (lst) (error “List too long!”))

Issue: we get the right length for an empty list, but 

this does not work for non-empty lists



How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

Another copy of 

the function 

itself?

Issue: we get the right length for an empty and single 

element list, but still doesn’t work in general



How do we write a recursive function?
Let’s just use lambdas, no Racket special forms

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (??? (rest lst)))]))

Options for ???:

Issue: This turns a “function” into an “argument” – not 

the functionality we really want

Wrap the code 

above in a (lambda 

(len) …)



Progress towards what we want…

(define make-length

(lambda (len)

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))))

Same function as last slide, but bound to the identifier make-length

• The orange text (together with purple text) is the body of make-length

• The purple text is the body of the closure returned by (make-length x)

Currying!



Progress towards what we want…

(define make-length

(lambda (len)

(lambda (lst)

(cond [(empty? lst) 0]

[else (add1 (len (rest lst)))]))))

Same function as last slide, but bound to the identifier make-length

• The orange text (together with purple text) is the body of make-length

• The purple text is the body of the closure returned by (make-length x)

(define L0 (make-length (lambda (lst) (error "too long"))))

L0 correctly computes the length of the empty list but fails on longer lists



(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

Many make-length 
definitions



If we have the definitions below, how can we define a new procedure 
L3 that correctly calculates the length for lists of length 3 or less?

(define L0 (make-length 

(lambda (lst) (error "too long"))))

(define L1 (make-length L0))

A. (define L3 (make-length L1))

B. (define L3 (make-length (make-length L1))

C. (define L3 (make-length 3))

D. Something else
17



(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

(define L2 (make-length L1)) ;works for <= 2 element lists

(define L3 (make-length L2)) ;works for <= 3 element lists

Insight: we’d need an L∞ in order to work for all lists

Many make-length 
definitions



(define L0 (make-length (lambda (lst) (error "too long"))))

(define L1 (make-length L0)) ;works for <= 1 element lists

(define L2 (make-length L1)) ;works for <= 2 element lists

(define L3 (make-length L2)) ;works for <= 3 element lists

We need a function on functions

In all the LN cases, make-length 

and L(N-1) are both functions



Some Definitions

Combinator: a function that operates on functions 

Fixed-point (same as in math): a value that does not change 

under a given transformation 

To solve our “pure” recursion problem we are going to use a 

term called a fixed-point combinator

It produces a fixed point because we want it to simply “keep 

returning” its argument



Enter: the Y Combinator

If f is a function of one argument, then (Y f) = (f (Y f))

(Y make-length)

=> (make-length (Y make-length))

=> (lambda (lst)

(cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))]))

This is precisely the length function! 
(define length (Y make-length))



How is (Y make-length) the same as length?
(define length (Y make-length))

Let's step through applying our length function to '(1 2 3)

(length '(1 2 3))     ; so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))) 

=> (add1 (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))]))

=> (add1 (add1 (length '(3)))) 

=> (add1 (add1 (cond […][else (add1 …)])))

=> (add1 (add1 (add1 (length '()))))

=> (add1 (add1 (add1 (cond [(empty? lst) 0][…]))))

=> (add1 (add1 (add1 0)))

=> 3



Um… what exactly is the definition of Y?
When we introduced Y, we said: 
“If f is a function of one argument, then (Y f) = (f (Y f))”

Two issues: 

1. We define Y in terms of Y – wasn’t the whole point to write 

recursive anonymous functions?

2. If (Y f) = (f (Y f)), then 

(f (Y f)) = (f (f (Y f)) = (f (f (f (Y f)))) = 

…

and this will never end



Definition of the Y Combinator

Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))

So if we pass through some function fact, we get 

Y fact = (λ (t) (λ (f) t (f f)) (λ (f) t (f f))) fact

-> (λ (f) fact (f f)) (λ (f) fact (f f))

-> fact ((λ (f) fact (f f)) (λ (f) fact (f f)))

Y fact = fact (Y fact)



What is Y (λ (x) x)? i.e. Y applied to the identity. 

Y = (λ (t) (λ (f) t (f f)) (λ (f) t (f f)))

A.(λ (f) f f) (λ (f) f f)

B.(λ (f) f f)

C.(λ (f) f)

D.Y (λ (f) f)

E. Something else



Aside: Omega 

2

6

Ω = (λ (x) x x) (λ (x) x x)

What is interesting about Ω is that, when we try to reduce 

it, we still just get Ω:

Ω = (𝜆 (𝑥) 𝑥 𝑥) (𝜆 (𝑥) 𝑥 𝑥)
→ (𝜆 (𝑥) 𝑥 𝑥) (𝜆 (𝑥) 𝑥 𝑥)
= Ω



Y in Racket
(define Y

(lambda (t)

((lambda (f) (t (f f)))

(lambda (f) (t (f f))))))

Y is a function of t and its body is applying the anonymous function (lambda 

(f) (t (f f))) to the argument (lambda (f) (t (f f))) and 

returning the result.

(Y foo) = ((lambda (f) (foo (f f)))

(lambda (f) (foo (f f))))

= (foo ((lambda (f) (foo (f f)))

(lambda (f) (foo (f f)))))

= (foo (Y foo))



Issue: The Y Combinator for Racket

This form of the Y-combinator doesn't work in Racket because 

the computation would never end (“CBV divergence problem”)

We can fix this by using the related Z-combinator

(define Z

(lambda (t)

((lambda (f) (t (lambda (v) ((f f) v))))

(lambda (f) (t (lambda (v) ((f f) v)))))))

With this definition, we can create a length function
(define length (Z make-length))

Now a value, so don’t try to unroll 

the whole recursion!



Guide to Using Z Yourself!

1. Write your recursive function normally with recursive calls:
(define foo (lambda (x) …))

2. Wrap the lambda in another, single-argument lambda whose 

argument has the same name as your function:
(define foo (lambda (foo) (lambda (x) …)))

3. Apply Z to that
(define foo (Z (lambda (foo) (lambda (x) ...))))

4. Recursion without special forms, achieved!



What about multi-argument functions?

We can use apply!

(define Z*

(lambda (t)

((lambda (f) (t 

(lambda args (apply (f f) args))))

(lambda (f) (t 

(lambda args (apply (f f) args)))))))

args here are the 

arguments to the 

recursive function that 

we are trying to write



Example: combinator map
((Z* (lambda (map)

(lambda (proc lst)

(cond [(empty? lst) empty]

[else (cons (proc (first lst))

(map proc (rest lst)))]))))

add1

'(1 2 3 4 5))

We're applying Z* to the orange function which returns a recursive map 

procedure

Then we're applying that procedure to the arguments add1 and 

'(1 2 3 4 5)
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