
CSCI 275:
Programming Abstractions

Stephen Checkoway

Slides from Molly Q Feldman

Lecture 33: Learning a Language (cont.)

Fall 2024

Languages have different
evaluation strategies

Formal beta-reduction rule

Formally the semantic rule is

(λx. e) e1 -> e {e1/x}

In English we describe this as “the

term obtained by replacing all free

occurrences of x in e by e1”

There are different ways to do beta-reduction!

It all is dependent on which reducible expressions you

are allowed to reduce.

These are typically called evaluation strategies

Let’s think about the following complex reducible

expression:

(λx. x) ((λx. x) (λz. (λx. x) z))

If we want to simplify the below expression and replace all
instances of the “identity” procedure (λx. x) with the term

id, what do we get?

(λx. x) ((λx. x) (λz. (λx. x) z))

A.id (λz. id z)

B.id (id (λz. id z))

C.id (id (λz. z))

D.(λz. z)

E.Something else

Full Beta-Reduction: Reduce Any Term!

Under full beta-reduction we can reduce in any order

we want:

id (id (λz. id z))

-> id (λz. id z))

-> (λz. id z)

-> λz. z

Remember id is the
identity procedure

λx. x

Normal Order: Leftmost, Outmost

Under normal order we start with the leftmost,

outermost reducible expression:

id (id (λz. id z))

-> id (λz. id z)

-> λz. id z

-> λz. z

Applicative Order: Leftmost, Innermost

Under applicative order we start with the leftmost,

innermost reducible expression:

id (id (λz. id z))

-> id (id (λz. z))

-> id (λz. z)

-> λz. z

We typically do not evaluate inside lambdas

Normal Order Applicative Order

In most languages, we will not do the
id z reductions below.

We typically do not evaluate inside lambdas

In Racket, when we define a lambda expression, we do

not evaluate its body:

(lambda (x)

(displayln "banana"))

“banana” does not print out.

Think about how we evaluate lambdas in MiniScheme

Call-by-Name Reduction

Normal order (outermost), but we do not reduce
inside the bodies of λ-abstractions:

id (id (λz. id z))

-> id (λz. id z)

-> λz. id z

Call-by-Value Reduction

Applicative order (innermost), but we do not reduce
inside the bodies of λ-abstractions:

id (id (λz. id z))

-> id (λz. id z)

-> λz. id z

We’ve seen CBN/CBV before!

This is the formal model of call-by-value, we discussed

the way it is (or could be) implemented in Racket as

parameter passing styles

Call-by-Value

Normal Order

Call-by-Name

Applicative Order

Abstract versus Concrete Syntax

Abstract/Concrete Syntax

Concrete Syntax: the characters that programmers

actually write to create the language

Abstract Syntax: the internal representation of programs

as labeled trees

MiniScheme expressions you

wrote in minischeme.rkt REPL

What you created in

parse.rkt!

Lambda Calculus Provides Abstract Syntax

As Pierce states, “Grammars like the one for lambda-terms

above should be understood as describing legal tree

structures, not strings of tokens or characters”

Lambda terms are guidelines for an abstract

representation of a computation that can be instantiated in

many ways

Parse Trees & Abstract Syntax Trees

Parsers (like the one you wrote in MiniScheme) take a

sequence of tokens and create an abstract syntax tree

from them

Abstract Syntax Trees

ASTs can easily encode precedence operations–
consider 1 + 2 * 3

1

2 3

*

+

1 2

3

*

+

Consider the following two expressions:

Python: 1 + 2 – 3 * 4

Racket: (+ 1 (- 2 (* 3 4)))

Which of the following statements do you agree with?

A. Easier to determine the order of precedence in Racket than Python

B. Easier to determine how to parse Racket than Python

C. Easier to determine the order of precedence in Python than Racket

D. Easier to determine how to parse Python than Racket

E. More than one of the above

Concrete & Abstract Syntax Similarity

In Scheme/Racket there is a closeness between the

concrete syntax (what we write) and the abstract syntax

The language would still work without the closeness, but

MiniScheme would likely have been harder to implement!

	Slide 1: CSCI 275: Programming Abstractions
	Slide 14: Languages have different evaluation strategies
	Slide 15: Formal beta-reduction rule
	Slide 17: There are different ways to do beta-reduction!
	Slide 18: If we want to simplify the below expression and replace all instances of the “identity” procedure (λx. x) with the term id, what do we get? (λx. x) ((λx. x) (λz. (λx. x) z))
	Slide 19: Full Beta-Reduction: Reduce Any Term!
	Slide 20: Normal Order: Leftmost, Outmost
	Slide 21: Applicative Order: Leftmost, Innermost
	Slide 22: We typically do not evaluate inside lambdas
	Slide 23: We typically do not evaluate inside lambdas
	Slide 24: Call-by-Name Reduction
	Slide 25: Call-by-Value Reduction
	Slide 26: We’ve seen CBN/CBV before!
	Slide 27: Call-by-Value
	Slide 28: Abstract versus Concrete Syntax
	Slide 29: Abstract/Concrete Syntax
	Slide 30: Lambda Calculus Provides Abstract Syntax
	Slide 31: Parse Trees & Abstract Syntax Trees
	Slide 32: Abstract Syntax Trees
	Slide 33: Consider the following two expressions: Python: 1 + 2 – 3 * 4 Racket: (+ 1 (- 2 (* 3 4))) Which of the following statements do you agree with?
	Slide 35: Concrete & Abstract Syntax Similarity

