
CSCI 275:
Programming Abstractions

Stephen Checkoway

Slides from Molly Q Feldman

Lecture 32: Learning a Language

Fall 2024

Goal for the next few days

(lambda (x y) (+ x y)))

1. Where does the lambda keyword actually come

from?

2. Why does Racket’s syntax look the way it does?

3. A bunch of other cool things

The content in these lectures is adapted from “Types and Programming Languages” by Pierce, Cornell’s CS 4110/6110 Notes and Phil Wadler’s

”Propositions as Types”

MiniScheme

In the MiniScheme project, we wrote an interpreter for a

language called MiniScheme

• MiniScheme has a formal grammar that we wrote down

• We made parse trees to represent an intermediate

version of the language

• We then interpreted those parse trees to evaluate

MiniScheme expressions

Learning a Language & Practical Concerns

What I want you to take away from this class is a

practiced, defined notion of

Language design and implementation fundamentals

What’s a good way to learn a language?

Know the most fundamental underlying structure!

To Spoil the Punchline….

The rest of this week we are going to talk about the first

programming language

It’s called the lambda calculus

Invented in 1935 by Alonzo

Church

What is Scheme?

http://dspace.mit.edu/bitstream/handle/1721.1/5794/AIM-349.pdf

http://dspace.mit.edu/bitstream/handle/1721.1/5794/AIM-349.pdf

Introduction to the
Lambda Calculus

The Lambda Calculus

Much like other languages, the lambda calculus has a syntax and

a semantics. Here is its syntax:

e :: = x

λx. e

e1 e2

Use parentheses for grouping terms together (λx. λy. x) a b

Function application is left associative: f x y is the same as (f x) y

variable

function abstraction

function application

How do we compute with this?

It is very simple: all we can do in the base lambda

calculus is apply functions to arguments.

Examples:
(λx. x) a gives a

(λx. x (λx. x)) b gives us b (λx. x)

How do we compute with this?

It is very simple: all we can do in the base lambda

calculus is apply functions to arguments.

Examples:
(λx. x) a gives a

(λx. x (λx. x)) b gives us b (λx. x)

These terms are called

reducible expressions

Substituting arguments into

functions is called beta-

reduction

How do we compute with the lambda
calculus?
We can actually write many more meaningful

programs than you might expect!

Church

Booleans

Church

Numerals

Reminder: Currying

Currying is the approach of returning a function from another
function:

(define equal-x-checker

(lambda (x)

(lambda (y)

(equal? y x)))

Then (equal-x-checker 3) will be a procedure that checks
whether any input is equal to 3

((equal-x-checker 3) 4) is #f

Currying is default in the lambda calculus

Curried functions are actually the only multi-argument

functions in the lambda calculus:

λx. λy. y

We could add something like below, but we choose

not to:

λxy. y

Church Booleans

We can encode values for true and false. We call these “Church Booleans”

Intuition: true and false are two argument functions; they act like (if

#t t f) and (if #f t f) in Scheme

true t f = t

false t f = f

Church Booleans

Rewriting these in lambda calculus

true = λt. λf. t

false = λt. λf. f

Variable names don’t matter!

Encoding And

and = λb. λc. b c false

true = λt. λf. t

false = λt. λf. f

Let’s walk through the fact this works

on the board !

If
true = λt. λf. t
false = λt. λf. f

Is there another way to encode and?

A. λb. λc. b c c

B.λb. λc. b c b

C.λb. λc. b c true

D.Something else

E.Nope, only one and!

Remember we defined previously as
and = λb. λc. b c false

Church Numerals
We can also encode numbers in the lambda calculus

Intuition: We’ll encode numbers as repeated applications of a function f to a value
x

Think of each number as a two argument function that applies its first argument to
its second argument that number of times

zero f x = x

one f x = f x

two f x = f (f x)

three f x = f (f (f x))

Church Numerals

Rewriting this in lambda calculus gives

zero = λf. λx. x

one = λf. λx. f x

two = λf. λx. f (f x)

n = λf. λx. f (f …(f x)…)

Wait. If
false = λt. λf. f
and
zero = λf. λx. x

Is this a problem?

A. Yes

B. No because they have different types (false is a

Boolean and zero is a number)

C. No because they have different parameters

D. No because we can use the same function in

different contexts to do different things

Given one, how can we get two?

We can define a successor function:

one = λf. λx. f x

succ = λn. λf. λx. f (n f x)

To get:

two = λf. λx. f (f x)

Let’s try it out:

https://capra.cs.cornell.edu/lambdalab/

https://capra.cs.cornell.edu/lambdalab/

How can we add two numbers together?

Given two numbers n and m, discuss in your small

groups how you might intuitively compute n + m with

just the successor function.

How can we add two numbers together?

One way: given m, apply the successor function m

times to n!

plus = λm. λn. n succ m

Let’s try it out!

How can we write a recognizer?

Let’s write a recognizer (something that returns a
Boolean): iszero

This should return (our definition) of true if the

argument is zero, and false otherwise

Bonus stuff: Lists

Let’s implement lists in the lambda calculus

We need:

• cons — creating a pair

• fst — car in Scheme

• snd — cdr in Scheme

• null — the empty list

• isnull — null? in Scheme

The “easy” stuff: Pairs

For Church Booleans, we decided to use two-argument functions that
returned their first (for true) or second (for false) arguments

We have a similar situation where there are two parts to the pair and
we want fst to return the first element of the pair and snd to return the
second element

For Church pairs, let’s define the pair as a function that takes a two-
argument function and applies that to the two parts of the pair ➜

Pairs

cons = λx. λy. λf. f x y

• Ex. cons (a b) c → λf. f (a b) c

fst = λp. p true # fst (cons x y) → x

snd = λp. p false # snd (cons x y) → y

From pairs to lists (Tricky!)

A list is either a pair that we get from cons x y or is null

Tricky definition:

null = false

isnull = λp. p _____ true

• isnull null = (λp. p _____ true) null

→ null _____ true

= false _____ true

→ true (because false x y → y)

isnull
isnull = λp. p _____ true

What if p is not null? What if it’s cons x y?

cons x y → λf. f x y

isnull (λf. f x y)

= (λp. p _____ true) (λf. f x y)

→ (λf. f x y) _____ true

→ _____ x y true

→ false

isnull (λf. f x y)

= (λp. p _____ true) (λf. f x y)

→ (λf. f x y) _____ true

→ _____ x y true

→ false

What can we replace the ____ with such that the final

reduction is correct? Work on this in groups and when you
have a solution, select any answer

Lists

cons = λx. λy. λf. f x y

fst = λp. p true

snd = λp. p false

null = false

isnull = λp. p (λx. λy. λz. false) true

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Goal for the next few days
	Slide 3: MiniScheme
	Slide 4: Learning a Language & Practical Concerns
	Slide 5: To Spoil the Punchline….
	Slide 6: What is Scheme?
	Slide 7: Introduction to the Lambda Calculus
	Slide 8: The Lambda Calculus
	Slide 9: How do we compute with this?
	Slide 10: How do we compute with this?
	Slide 11: How do we compute with the lambda calculus?
	Slide 12: Reminder: Currying
	Slide 13: Currying is default in the lambda calculus
	Slide 14: Church Booleans
	Slide 15: Church Booleans
	Slide 16: Encoding And
	Slide 17: If true = λt. λf. t false = λt. λf. f Is there another way to encode and?
	Slide 18: Church Numerals
	Slide 19: Church Numerals
	Slide 20: Wait. If false = λt. λf. f and zero = λf. λx. x Is this a problem?
	Slide 21: Given one, how can we get two?
	Slide 22
	Slide 23: How can we add two numbers together?
	Slide 24: How can we add two numbers together?
	Slide 27: How can we write a recognizer?
	Slide 28: Bonus stuff: Lists
	Slide 29: The “easy” stuff: Pairs
	Slide 30: Pairs
	Slide 31: From pairs to lists (Tricky!)
	Slide 32: isnull
	Slide 33: isnull (λf. f x y) = (λp. p _____ true) (λf. f x y) → (λf. f x y) _____ true → _____ x y true → false What can we replace the ____ with such that the final reduction is correct? Work on this in groups and when you have a solution, s
	Slide 34: Lists

