Stephen Checkoway Slides from Molly Q Feldman

CSCI 275: Programming Abstractions Lecture 32: Learning a Language Fall 2024

Goal for the next few days (lambda (x y) (+ x y)))

1. Where does the lambda keyword actually come from?

2. Why does Racket's syntax look the way it does?

3. A bunch of other cool things

The content in these lectures is adapted from "Types and Programming Languages" by Pierce, Cornell's CS 4110/6110 Notes and Phil Wadler's "Propositions as Types"

MiniScheme

In the MiniScheme project, we wrote an **interpreter** for a language called MiniScheme

• MiniScheme has a **formal grammar** that we wrote down • We made **parse trees** to represent an intermediate

-
- version of the language
- We then interpreted those parse trees to **evaluate MiniScheme expressions**

Learning a Language & Practical Concerns

What I want you to take away from this class is a practiced, defined notion of

Language design and implementation fundamentals

What's a good way to learn a language?

Know the most *fundamental* underlying structure!

To Spoil the Punchline….

The rest of this week we are going to talk about the first

Invented in 1935 by Alonzo **Church**

programming language

It's called the *lambda calculus*

What is Scheme?

```
Inspired by ACTORS [Greif and Hewitt] [Smith and Hewitt], we have
lambda calculus [Church], but extended for side effects, multiprocessing, and
process synchronization. The purpose of this implementation is tutorial. We
```


<http://dspace.mit.edu/bitstream/handle/1721.1/5794/AIM-349.pdf>

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 349

SCHEME

AN INTERPRETER FOR EXTENDED LAMBDA CALCULUS

Gerald Jay Sussman and Guy Lewis Steele Jr.

Abstract: implemented an interpreter for a LISP-like language, SCHEME, based on the wish to:

December 1975

Introduction to the Lambda Calculus

The Lambda Calculus

Much like other languages, the lambda calculus has a *syntax* and

-
-

a *semantics*. Here is its syntax:

Use parentheses for grouping terms together (λx. λy. x) a b Function application is left associative: f x y is the same as (f x) y

e :: = x λx. e *function abstraction* e_1 e_2 *variable function application*

How do we compute with this?

It is *very simple*: all we can do in the base lambda

Examples: (λx. x) a gives a (λ x. x (λ x. x)) b gives us b (λ x. x)

calculus is apply functions to arguments.

How do we compute with this?

It is *very simple*: all we can do in the base lambda

Examples: (λx. x) a gives a $(\lambda x. x (\lambda x. x))$ b gives us b $(\lambda x. x)$

calculus is apply functions to arguments.

These terms are called *reducible expressions*

Substituting arguments into functions is called *betareduction*

How do we compute with the lambda calculus?

We can actually write *many more meaningful* programs than you might expect!

Church Booleans

Church Numerals

Reminder: Currying

Currying is the approach of returning a function from another function:

(define equal-x-checker (lambda (x) (lambda (y) (equal? y x)))

whether any input is equal to 3

((equal-x-checker 3) 4) is #f

Then (equal-x-checker 3) will be a procedure that checks

Currying is *default* **in the lambda calculus** Curried functions are actually the only multi-argument functions in the lambda calculus:

We could add something like below, but we choose not to:

$$
\lambda x y. \hspace{0.5cm} y
$$

Church Booleans

- We can encode values for true and false. We call these "Church Booleans"
- Intuition: true and false are two argument functions; they act like \int if \overline{I}

#t t f) and (if #f t f) in Scheme

true t f = t false t f = f

Church Booleans Rewriting these in lambda calculus

Variable names don't matter!

Encoding And

true = λt. λf. t fa lse = λt . λf . f

and $=$ λb . λc . b c false

Let's walk through the fact this works on the board !

T f true = λt. λf. t fa lse = λt . λf . f Is there another way to encode and? A. λb. λc. b c c B.λb. λc. b c b C.λb. λc. b c true D.Something else E.Nope, only one and! Remember we defined previously as and $=$ λb . λc . b c false

Church Numerals

We can also encode numbers in the lambda calculus

- Intuition: We'll encode numbers as repeated applications of a function f to a value x
- Think of each number as a two argument function that applies its first argument to its second argument that number of times

Church Numerals Rewriting this in lambda calculus gives

Wait. If fa lse = λt . λf . f and $zero = \lambda f$. λx . x

Is this a problem?

- A. Yes
- B. No because they have different types (false is a Boolean and zero is a number)
- C. No because they have different parameters
-

D. No because we can use the same function in different contexts to do different things

Given one, how can we get two? We can define a successor function: one = λf. λx. f x $succ = \lambda n. \lambda f. \lambda x.$ (n f x)

To get: $two = \lambda f. \lambda x.$ $f(f x)$

Let's try it out: <https://capra.cs.cornell.edu/lambdalab/>

How can we add two numbers together?

Given two numbers n and m, discuss in your small groups how you might intuitively compute $n + m$ with just the successor function.

How can we add two numbers together? One way: given m, apply the successor function m times to n!

plus = λm. λn. n succ m

Let's try it out!

How can we write a recognizer?

Let's write a recognizer (something that returns a

Boolean): iszero

This should return (our definition) of true if the argument is zero, and false otherwise

Bonus stuff: Lists

Let's implement lists in the lambda calculus We need:

- cons creating a pair
- fst car in Scheme
- snd cdr in Scheme
- null the empty list
- isnull null? in Scheme

The "easy" stuff: Pairs

returned their first (for true) or second (for false) arguments

For Church pairs, let's define the pair as a function that takes a twoargument function and applies that to the two parts of the pair \rightarrow

- For Church Booleans, we decided to use two-argument functions that
- We have a similar situation where there are two parts to the pair and we want fst to return the first element of the pair and snd to return the

second element

Pairs

From pairs to lists (Tricky!)

- null = false
- $isnull = \lambda p. p$ true
- isnull null = $(\lambda p. p$ true) null
	-
	-
	-

A list is either a pair that we get from cons x y or is null

Tricky definition:

isnull i snull = λp . p true

What if p is not null? What if it's cons x y? cons x $y \rightarrow \lambda f$. f x y isnull (λf. f x y) $=$ ($\lambda p.$ p $=$ $true)$ ($\lambda f.$ f x y) \rightarrow (λ f. f x y) true → _____ x y true → false

What can we replace the <u>secal</u> with such that the final reduction is correct? Work on this in groups and when you have a solution, select any answer

Lists

 $cons = \lambda x. \lambda y. \lambda f.$ f x y fst = λp . p true snd = λp. p false null = false isnull = λp . p (λx . λy . λz . false) true