
CSCI 275:
Programming Abstractions
Lecture 30: Exam 2 Review

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Plan for Today

• Brief overview of Exam 2 logistics

• Many (!) Clicker questions for Review

• Some open ended Review Questions

• If there’s time, opportunity to ask questions

Details of the Exam

Open book/notes/Racket – will specify specifically in the

assignment

Programming problems & conceptual questions related to

programming

Two goals:

- Show you how much you know

- Show me your “intuitive” response to different topics

Logistics

Exam will be available for 24 hours (all day Wednesday)

The exam will be released/submitted via GitHub Classroom

During Wednesday’s class, I will be in my office, feel free to stop

by to ask any questions about the exam

SAME deal as Exam 1

In Scope Topics

• Higher-order functions

• MiniScheme

• Implementation

• Design

• Theory

• Scoping

• Streams

• Parameter Passing

Practice Clicker Questions

Consider a new structure to represent a point in 2D:
(struct point (x y) #:transparent)

If p is a point created via the point constructor, how would we

create a new point whose fields are the absolute value of the fields
in p? (The function (abs x) returns the absolute value of x.)

A.(map abs p)

B.(list* 'point (map abs (rest p)))

C.(struct point (abs (point-x p)) (abs (point-y p)))

D.(point (abs (point-x p)) (abs (point-y p)))

E. More than one of the above (which?)

Which of the following, when (stream->list

(stream-take (PROCEDURE 1 2) 10)) is run,

produces '(1 2 1 2 1 2 1 2 1 2)?
(define (sheep a b)

(stream-cons '(a b) (sheep a b)))

(define (lamb a b)

(stream-cons a

(stream-cons b (lamb a b))))

(define (ram a b)

(stream-cons a b (ram a b)))

D. More than one of the above E. None of the above

A.

B.

C.

When parsing a let expression, which pieces of

information does the parse tree need to store?

A. An extended environment mapping the symbols in the binding list
to their values and the body expression

B. A list of binding symbols, list of parse trees for the binding
expressions, and the parsed body expression

C. A list of binding symbols, a list of binding values, and the body
expression

D. Any of A, B, or C work

E. Either B or C work, but not A

Let’s say we want to implement let* in MiniScheme. Which files

would need to change?

(let* ([x 2]

[y (+ x 4)]) y)

A.env.rkt, parse.rkt, interp.rkt

B.interp.rkt and parse.rkt

C.parse.rkt only

D.interp.rkt only

E. Some other combination!

Evaluating a lambda gives a closure. A closure in a language

with dynamic binding needs to contain which information?

A. The list of parameters

B. The list of parameters and the parsed body

C. The list of parameters, the parsed body, and the

environment in which the lambda was evaluated

D. The list of parameters, the parsed body, and the

environment in which the closure is to be evaluated

What is the output of the following in Call by Value versus Call by

Name?
; Always returns an even int when x is an int

(define (double x) (+ x x))

(let ([a 1])

(double (begin (set! a (add1 a)) a)))

A.CBV: 4

CBN: 4

B.CBV: 3

CBN: 3

C.CBV: 4

CBN: 3

D.CBV: 4

CBN: 5

E.CBV: 5

CBN: 4

Adapted from Lyn Turbak

Additional Practice

For many primitive procedures, we can have a line like
[(eq? op '+) (apply + args)]

in apply-primitive-op.

Does [(eq? op 'lt?) (apply < args)]

work for our less than procedure?

A. It will work because < is Racket's less than

B. It won't work because lt? is Racket's less than

C. It won't work because < takes two arguments and apply allows any
number of arguments

D. It won't work because < returns #t or #f

What is the value of the expression assuming lexical binding? What

about dynamic binding?

(let* ([x 10]

[f (lambda (z) (* x z))])

(let ([x 20])

(f x)))

A. Lexical: 100

Dynamic: 100

B. Lexical: 100

Dynamic: 200

C. Lexical: 200

Dynamic: 100

D. Lexical: 200

Dynamic: 200

E. Lexical: 200

Dynamic: 400
2

0

Write a procedure power that, given n, returns a stream

containing the powers of n.

For instance, if n = 2, we should get the stream

(2,4,8,16,32...).

21

Why do we have multiple environments?

Why not just have a single environment where we update the
bindings for each let expression or procedure call?

22

	Slide 1: CSCI 275: Programming Abstractions
	Slide 4: Plan for Today
	Slide 5: Details of the Exam
	Slide 6: Logistics
	Slide 7: In Scope Topics
	Slide 8
	Slide 9: Consider a new structure to represent a point in 2D: (struct point (x y) #:transparent) If p is a point created via the point constructor, how would we create a new point whose fields are the absolute value of the fields in p? (The function (abs
	Slide 10: Which of the following, when (stream->list (stream-take (PROCEDURE 1 2) 10)) is run, produces '(1 2 1 2 1 2 1 2 1 2)?
	Slide 11: When parsing a let expression, which pieces of information does the parse tree need to store?
	Slide 12: Let’s say we want to implement let* in MiniScheme. Which files would need to change? (let* ([x 2] [y (+ x 4)]) y)
	Slide 14: Evaluating a lambda gives a closure. A closure in a language with dynamic binding needs to contain which information?
	Slide 15: What is the output of the following in Call by Value versus Call by Name? ; Always returns an even int when x is an int (define (double x) (+ x x)) (let ([a 1]) (double (begin (set! a (add1 a)) a)))
	Slide 16
	Slide 19: For many primitive procedures, we can have a line like [(eq? op '+) (apply + args)] in apply-primitive-op. Does [(eq? op 'lt?) (apply < args)] work for our less than procedure?
	Slide 20: What is the value of the expression assuming lexical binding? What about dynamic binding? (let* ([x 10] [f (lambda (z) (* x z))]) (let ([x 20]) (f x)))
	Slide 21: Write a procedure power that, given n, returns a stream containing the powers of n. For instance, if n = 2, we should get the stream (2,4,8,16,32...).
	Slide 22: Why do we have multiple environments? Why not just have a single environment where we update the bindings for each let expression or procedure call?

