
CSCI 275:
Programming Abstractions
Lecture 28: Control Flow Design

Fall 2024

Molly Q Feldman

Oberlin College

This Semester Thus Far

Thus far:

- First month we thought about how to write Racket

- Second month we thought about to execute Racket

The rest of the semester:

- Thinking about context beyond Racket (theory & practice)

Reminder: This Week’s Goal
Talk about design of a language and how it impacts

implementation

• In MiniScheme, you are implementing a certain language

that has certain rules

• Many times, we have choices for these rules

• Wednesday & Today: what we could and can do for rules

in language design
• Another “instantiate your subconscious process” topic!

• Another way to think about how your knowledge applies after

this class

Language Design

Ways MiniScheme did not deviate from Racket

We decided to include control flow via:

• If-then-else statements

• Recursive evaluation of procedural approaches

A.for loops

B.while loops

C.if statements

D.cond statements

E.More than one of the above

Which of the following control flow statements

are not part of the MiniScheme language?

Language structures that allow us to make

choices about what statement happens next

Final MiniScheme grammar
EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP EXP*)

LET-BINDINGS → LET-BINDING*
LET-BINDING → [symbol EXP]*

PARAMS → symbol*

Ways MiniScheme did not deviate from Racket

We decided to include control flow via:

• If-then-else statements

• Recursive evaluation of procedural approaches

We did not consider other types of iteration or control

flow constructs such as:

-for loops

-while loops

-(switch/match statements)

Why did we not consider other control
flow?

Why did we not consider other control flow?

• If-then-else statements are fundamental in most languages

• Iteration via recursion is fundamental to Racket and, more
broadly, to functional programming overall

• Also an added benefit of reducing the need for
additional special forms!

• These are also “standard” design constructs, that we see
in many many languages

A (Very Different)
Language Construct

Reminder from last time: Scope of a declaration

The scope of a declaration is the portion of the expression or
program to which that declaration applies

Lexical binding

• Scope of a variable is determined by textual layout of the
program

• C, Java, Scheme/Racket use lexical binding

Dynamic binding

• Scope of a variable is determined by most recent runtime
declaration

• Bash and classic Lisp use dynamic binding

goto statements are a (classic) way to handle control

flow in some programming languages

goto statements rely on two parts:

1. Add labels that reference specific code segments
2. Use goto label to move between code segments

goto Statements

A. 0 1 2 3 … 9

B. 9 8 7 6 … 0

C. 0 1 2 3 … 10

D. Infinite sequence of 0s

E. Something else

This is C++ code.

What does it print

out?

std::cout is like System.out.printlin

in Java

A. Yes

B. No

C. In some cases

Does this change to

the code solve the

problem?

Introducing Complexity

This example seems like “another way to iterate”

goto can introduce interesting consequences - especially

for scope!

Languages with goto

Languages with goto:

• APL

• Ada

• Fortran

• Perl

• Assembly (you build if/for/while out of conditional

gotos!)

• C/C++

class ObjectD {

public:

char val;

//constructor

ObjectD(char v) {val = v;};

// non-trivial destructor

~ObjectD() {std::cout << val << ":d! "; }

};

A Bit of Context: Objects in C++

- Destructors start with ~ in C++

- Destructors called whenever an object is going to be destroyed

- Happens when they are called explicitly or object goes out of scope

Walk through an example!

Goal: how is this different than code
you’ve walked through before?

https://en.cppreference.com/w/cpp/language/goto

https://en.cppreference.com/w/c/language/goto

goto examples adapted from the C/C++ guides:
#include <iostream>

//In Class Goto Example
//Adapted from https://en.cppreference.com/w/cpp/language/goto

class ObjectD {

char val;
public:

//constructor

ObjectD(char v) {val = v;};
// non-trivial destructor

~ObjectD() {std::cout << val << ":d! "; }
};

int main() {

int a = 10;

std::cout << "before label" << "\n";

label:

if (a == 10) {
ObjectD obj = ObjectD('a');
}

else {
ObjectD obj = ObjectD('b');

}
std::cout << a << " ";
a = a - 2;

if (a != 0) {

goto label;
}

std::cout << "\n";
for (int x = 0; x < 3; x++) {

for (int y = 0; y < 3; y++) {
std::cout << "(" << x << "|" << y << ")" << "\n";
if (x + y >= 3) {

goto endloop;
}

}
}

endloop:
std::cout << "end loop" << "\n";

goto label3;

label3:

std::cout << "label3" << "\n";
}

Why is this not something we tend to use?

Why are goto statements not common in other

languages?

Why did we not implement this in MiniScheme?

How did the community decide this?

• In conversation

• Overtime

• Due to real world challenges / challenging use cases

Goto Considered Harmful (1968)

Edsger Dijkstra wrote a letter to the editor as part of the

Communications of the ACM

This letter is very well-known by academics (for instance,

part of “Great Works” reading groups)

You might ask: why?

NOTE: This is a paper from 1968, the terminology &

approach is not modern.

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

	Slide 1: CSCI 275: Programming Abstractions
	Slide 3: This Semester Thus Far
	Slide 4: Reminder: This Week’s Goal
	Slide 5: Language Design
	Slide 6: Ways MiniScheme did not deviate from Racket
	Slide 7
	Slide 8: Final MiniScheme grammar
	Slide 9: Ways MiniScheme did not deviate from Racket
	Slide 10: Why did we not consider other control flow?
	Slide 11: Why did we not consider other control flow?
	Slide 12: A (Very Different) Language Construct
	Slide 13: Reminder from last time: Scope of a declaration
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Why is this not something we tend to use? Why are goto statements not common in other languages? Why did we not implement this in MiniScheme?
	Slide 24: How did the community decide this?
	Slide 26: Goto Considered Harmful (1968)
	Slide 27
	Slide 28
	Slide 32

