
CSCI 275:
Programming Abstractions
Lecture 27: Scoping Methods

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman



Functional Language of the Week: F#

2

• Is based not on the JVM, but on the .NET Framework that 

underlies C# and other Microsoft-based languages

• Borrows ideas from the ML family of languages (OCaml, for 

instance) 

• F# versus C#? The founder make a strong argument for F#’s 

support of concurrent/parallel programming. 
• Interesting interview here! https://www.red-gate.com/simple-

talk/opinion/geek-of-the-week/don-syme-geek-of-the-week/

https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/don-syme-geek-of-the-week/
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/don-syme-geek-of-the-week/


Functional Language of the Week: F#

/// Square the odd values of the input and add 

one, using F# pipe operators.

let squareAndAddOdd values =

values

|> List.filter (fun x -> x % 2 <> 0)

|> List.map (fun x -> x * x + 1)

let numbers = [ 1; 2; 3; 4; 5 ]

let result = squareAndAddOdd numbers

Pipeline 

Operators

(like in R) 

let result3 = apply1 (fun x -> x + 1) 100

let result4 = apply2 (fun x y -> x * y ) 10 20

Also lambdas of 

course!

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/functions/



Today (& Friday)’s Goal

Talk about design of a language and how it impacts 

implementation

• In MiniScheme, you are implementing a certain 

language that has certain rules 

• Many times, we have choices for these rules

• Today & next time: what we could and can do for rules 

about how to understand variables 



Lexical Binding



High level: Variable Usage

There are two ways a variable can be used in a program:

• As a declaration

• As a "reference" or use of the variable

Scheme/Racket has two kinds of variable declarations
• the bindings of a let-expression and

• the parameters of a lambda-expression

Note: Back to no mutation 

world!! 

No set! or begin here



Scope of a declaration

The scope of a declaration is the portion of the expression or 

program to which that declaration applies

Lexical binding

• Scope of a variable is determined by textual layout of the 

program

• C, Java, Scheme/Racket use lexical binding

Dynamic binding

• Scope of a variable is determined by most recent runtime

declaration

• Bash and classic Lisp use dynamic binding



Scope in Scheme

Scope of variables bound (declared) in a let is the body of the let

Scope of parameters in a lambda is the body of the lambda

(let ([x 5]

[y 10])

(* ((lambda (z) (+ z y)) 7)

x

y))
We mentioned scope when we 

discussed how to implement 

MiniScheme environments



Shadowing bindings

Shadowing: Declaring a new variable with the same name as 

an existing variable in an enclosing scope

(let ([x 5]

[y 10])

(* ((lambda (x) (+ x y)) 7)

x

y))

We say that the inner binding for x shadows the outer binding for 

x



How to determine the appropriate 
binding?

1. Start at the use of a variable

2. Search the enclosing regions starting with the innermost and 

working outward looking for a binding (declaration) of the 

variable

3. The first binding you find is the appropriate binding

If there are no such bindings, we say the variable is free



Free Bindings? Problem!

If there are no such bindings found, we say the variable is free. 

Racket requires all variables to be bound.



1. (lambda (x y z)

2.   (if x

3.       (let ([y 10]

4.             [z 20])

5.         (+ x y z))

6.       (- y z)))

Which row of the table corresponds to line numbers where the 

variable indicated in the column was bound?

e.g., E indicates that the variables used in line 5 are bound in lines 1, 

3, and 4 and the variables used in line 6 are bound in lines 3 and 4.

Line 5 x Line 5 y Line 5 z Line 6 y Line 6 z

A 1 1 1 1 1

B 2 3 4 3 4

C 2 3 4 1 1

D 1 3 4 1 1

E 1 3 4 3 4



Visualizing Scope with Contour Diagrams
Draw the boundaries of the regions in which variable bindings are 

in effect

(lambda (x)

(lambda (y)

((lambda(x) (x y)) x)))

The body of a let or a lambda expression determines a contour

Each variable refers to the innermost declaration outside its 

contour



Lexical binding vs. Dynamic 
Binding



Recall: Scope of a declaration

The scope of a declaration is the portion of the expression or 

program to which that declaration applies

Lexical binding

• Scope of a variable is determined by textual layout of the 

program

• C, Java, Scheme/Racket use lexical binding

Dynamic binding

• Scope of a variable is determined by most recent runtime

declaration

• Bash and classic Lisp use dynamic binding



What is the value of y in the body of (f 
2)(let ([y 3])

(let ([f (lambda (x) (+ x y))])

(let ([y 17])

(f 2))))

With lexical (also called static) binding: y is 3

• The value of y comes from the closest lexical binding of y, 

namely [y 3]

With dynamic binding: y is 17

• The value of y comes from the most-recent run-time binding of 
y, namely [y 17]



Lambdas in a lexically-scoped language

A lambda expression evaluates to a closure which is a triple 

containing

• the environment at the time the lambda is evaluated

• the parameters

• the body of the lambda

When we apply the closure to argument expressions

• we evaluate the arguments in the current environment

• extend the closure's environment with bindings of 

parameters to argument values

• evaluate the closure's body in the extended environment



Lambdas in a dynamically-scoped language

A lambda expression evaluates to a procedure which is just a 

pair containing

• the parameters

• the body of the lambda

When we apply the procedure to argument expressions

• we evaluate the arguments in the current environment

• extend the current environment with bindings of parameters 

to argument values

• evaluate the lambda's body in the extended environment

No environment!



(let ([y 3])

(let ([f (lambda (x) (+ x y))])

(let ([y 17])

(f 2))))

Dynamic binding

Variable Value

y 3

Variable Value

f procedure

Variable Value

y 17

Variable Value

x 2

Lexical 

binding
Variable Value

y 3

Variable Value

f closure

Variable Value

y 17

Variable Value

x 2



(let* ([x 10]

[f (lambda (x) (+ x x))])

(f (- x 5)))

What is the value of this expression assuming lexical binding? 

What about dynamic binding?

A. Lexical: 10

Dynamic: 10

B. Lexical: 10

Dynamic: 20

C. Lexical: 20

Dynamic: 10

D. Lexical: 20

Dynamic: 20

E. None of the above



(let* ([x 10]

[f (lambda (y) (+ x y))])

(f (- x 5)))

What is the value of this expression assuming lexical binding? 

What about dynamic binding?

A. Lexical: 15

Dynamic: 15

B. Lexical: 15

Dynamic: 10

2

4

C. Lexical: 10

Dynamic: 15

D. Lexical: Error

Dynamic: 10

E. None of the above



(define f

(let ([z 100])

(lambda (x) (+ x z))))

(let ([z 10])

(f 2))

A. Lexical: 12

Dynamic: 12

B. Lexical: 12

Dynamic: 102

What is the value of this let 

expression assuming lexical 

binding? What about dynamic 

binding?

C. Lexical: 102

Dynamic: 12

D. Lexical: 102

Dynamic: 102

E. None of the above



Dynamic MiniScheme



apply-proc will evaluate the closure

(closure '(x y)

(app-exp (var-exp '+)

(list (var-exp 'x) (var-exp 'y)))

e)

by calling eval-exp on the body in the environment 

e[x ↦ 3, y ↦ 5]

Since the body is an app-exp, it'll evaluate (var-exp '+) to get

(prim-proc '+) and the arguments to get '(3 5)

eval-exp ((lambda (x y) (+ x y)) 3 5)



How to change to dynamic scope?

1. apply-proc in normal MiniScheme does not include the current 

environment 

▪ Change: make the signature 
(apply-proc proc args curr-env)

2. apply-proc in normal MiniScheme extends the closure’s 

environment 

▪ Change: ignore the closure’s environment! Just extend and 
evaluate in curr-env instead. 



How to change to dynamic scope?



A Greater Context



Why use dynamic binding?

It's easy to implement! dynamic binding was understood several 

years before static binding

Without additional context, it makes (lambda (x) (+ x y)) use 

whatever the latest, runtime version of y is



Why do we now use lexical binding?

Most languages are derived from Algol-60 which used lexical 

binding

Compilers can use lexical addresses known at compile time for 

all variable references

Code from lexically-bound languages is easier to verify

• e.g., in Racket, we can ensure a variable is declared before it 

is used before we run the program

• It makes more sense to most people



Python example
def fun(x):

return lambda y: x + y

def main():

f = fun(10)

print(f(7))     # Prints 17

x = 20

print(f(7))     # Prints 17

main()

Reminder: this is currying!



Bash example
1 #!/bin/bash

2 

3 x=0

4 

5 setx() {

6 x=$1

7 }

8 

9 printx() {

10 echo "${x}"

11 }

12

13 main() {

14 printx  # prints 0

15 setx 10

16 printx  # prints 10

17 local x=25

18 printx  # prints 25!

19 setx 100

20 printx  # prints 100!

21 }

22 

23 main

24 printx    # prints 10


	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Functional Language of the Week: F#
	Slide 3: Functional Language of the Week: F#
	Slide 4: Today (& Friday)’s Goal
	Slide 8: Lexical Binding
	Slide 9: High level: Variable Usage
	Slide 10: Scope of a declaration
	Slide 11: Scope in Scheme
	Slide 12: Shadowing bindings
	Slide 13: How to determine the appropriate binding?
	Slide 14: Free Bindings? Problem!
	Slide 15: 1. (lambda (x y z) 2.   (if x 3.       (let ([y 10] 4.             [z 20]) 5.         (+ x y z)) 6.       (- y z)))   Which row of the table corresponds to line numbers where the variable indicated in the column was bound?  e.g., E indicates tha
	Slide 16: Visualizing Scope with Contour Diagrams
	Slide 17: Lexical binding vs. Dynamic Binding
	Slide 18: Recall: Scope of a declaration
	Slide 19: What is the value of y in the body of (f 2)
	Slide 20: Lambdas in a lexically-scoped language
	Slide 21: Lambdas in a dynamically-scoped language
	Slide 22
	Slide 23: (let* ([x 10]        [f (lambda (x) (+ x x))])   (f (- x 5))) What is the value of this expression assuming lexical binding? What about dynamic binding?
	Slide 24: (let* ([x 10]        [f (lambda (y) (+ x y))])   (f (- x 5))) What is the value of this expression assuming lexical binding? What about dynamic binding?
	Slide 25: (define f   (let ([z 100])     (lambda (x) (+ x z))))  (let ([z 10])   (f 2))
	Slide 26: Dynamic MiniScheme
	Slide 27: eval-exp ((lambda (x y) (+ x y)) 3 5)
	Slide 28: How to change to dynamic scope?
	Slide 29: How to change to dynamic scope?
	Slide 30: A Greater Context
	Slide 31: Why use dynamic binding?
	Slide 32: Why do we now use lexical binding?
	Slide 33: Python example
	Slide 34: Bash example

