CSCI 275:
Programming Abstractions

Lecture 26: MiniScheme H (l1letrec)
Fall 2024

Stephen Checkoway 2 s
Slides from Molly Q Feldman

MiniScheme G Wrap Up

What IS minischeme.rkt for?

* A reminder that we are building the code to support a real-
eval-print-loop (or REPL)

* minischeme.rkt USESYyoUur parse and eval-exp to

give you the experience of writing an expression In

MiniScheme and seeing It evaluate
(begin N
(display (eval-exp (parse in) init-env))

(newline)
(loop)))))))

Welcome to DrRacket, version 8.5 [cs].
Language: racket, with debugging; memory limit: 512 MB.

MS> (let ([x 3]) (+ x 4))
/

Let's make set! useful: Introduce begin

MiniIScheme now has set! butitisn't of much use until we can

execute a sequence of expressions like
(let ([x 0])

(begin
(set! x 23)
(+ X 2)))

In Racket, we don't need the begin, but we do In MiniScheme
because our let expressions only have a single expression as a body

Parsing a begin expression
(begin expl exp2 ... expn)

You need a new data type to hold these, begin-exp IS a good
name

You will need a field that holds the list of parsed expressions

The expressions in (begin expl exp?2 .. expn) are evaluated in

order and the value of the expression Is the value that results from
evaluating expn.

How should we implement evaluating all the expressions? Assume we
have something like (let ([exps (begin-exp-exps tree)]) ..).

. (map eval-exp exps)

B. (map (lambda (exp) (eval-exp exp €)) exps)

C. (foldr (lambda (exp acc) (eval-exp exp e)) (void) exps)

D. (foldl (lambda (exp acc) (eval-exp exp e)) (void) exps)

E. More than one of the above

MiniIScheme H — The End!

MiniScheme H

* Go over how to Implement le
t!,and begin

S e

crec using nested le

CS,

* With that, MiniScheme key ideas are done and we've
covered all the concepts for Homework 8!

What is the value of this expression in Racket?

(let ([f£ addl])
(let ([f (lambda (x)
(£ (= x 0)
10
(* 2 (L

(f
A. 2

B. 4
C. 10
D. 20

E. An error

What Is the result of this expression In Racket?

(let ([f (lambda (n)
(L£ (equal? 0 n)
empty
(cons n (£ (= n 1)))))1)

3 2

E. An error

How to implement recursion in MiniScheme H

(letrec ([f expl] [g expZ2] ...) body)

We'll have the parser parse a letrec expression into something
equivalent that uses only things we have implemented

We won't need to change eval-exp at allt

To do this, we'll use

set! /begin

To what does this evaluate?

(let ([x O0])
(let ([y 34])
(begin
(set! x V)

X)))
A.O

B.34

C.An error

To what does this evaluate?

(Let ([m O])
(let ([n (lambda (x) (subl x))])
(begilin
(set! m n)

A0 m 7))
B.-1

C.7
D.6

E. An error

To what does this evaluate?
(let ([L O])
(let (g (lambda (x) (£
(begiln
(set! £ addl)
(g 3))))

A. O
B. 4
C.3

D. It runs forever

E. An error

Write factorial without letrec

(let ([fact 0])
(let ([placeholder (lambda (n)
(Lf (= n 0O)
1
(* n (fact (subl n))))))

(begin
(set! fact placeholder)
(fact 5))))

Mutual recursion

(letrec ([even?

L odd?

(odd? 23))

(lambda
(cond

(lambda
(cond

(X)

(= 0 x) #tC.

(= 1 x) -

else (odd? (subl x))]1))]
X)

(= 0 x) -

(= 1 x) #t.

else (even? (subl x))]1))])

Mutual recursion without letrec
(let (|[even? 0]

[odd? 0])
(let ([f£ (lambda (x)
(cond [(= 0 x) C]
(= 1 x) #1]
else (odd? (- x 1))1))]
g (lambda (x)
(cond [(= 0 x) #f]
(= 1 x) #t]
else (even? (- x 1))1))1)
(begin

(set! even? 1)
(set! odd? qg)
(odd? 23))))

How we will make this happen!
Replace

(letrec ([fl expl] .. [fn expn])
body)
with
(let ([£f1 O] .. [fn O7)
(let ([gl expl] .. [gn expn])
(begin

(set! £1 gl)

(set! fn gn)
pLody))

One problem with our plan: g1, ..., gn

Replace
(letrec ([fl expl] .. [fn expn])

pody) Symbols f1, ..., fn are provided In the letrec
with Where can we get symbols for g1, ..., gn that

do not conflict with existing symbols?
: .. [fn 07])
([gl expl] .. [gn expn])

Generating symbols

We can use the bullt-in Racket command (gensym) to
generate new, unique symbols

> (gensym)
'g 75075
> (gensym)
'g/75106

A common mistake with gensym

Every time you call (gensym), you get a new symbol

If you transform (letrec ([f ..1) ..) Into
(Let ([£ O0])
(let ([(gensym) ..])
(begilin
(set!

)))

This code will fail to work because the two
symbols will be different!

P

(gensym))

Final(!) MiniScheme grammar

EXP — number parse Into 1it-exp
| symbol parse Into var-exp
| (1If EXP EXP EXP) parse Into ite-exp
| (let (LET-BINDINGS) EXP) parse Into let-exp
| (lambda (PARAMS) EXP) parse Into lambda-exp
| (set! symbol EXP) parse Into set-exp
| (begin EXP*) parse Into begin-exp
| (EXP EXP*) parse Into app-exp

LET-BINDINGS — LET-BINDING*
LET-BINDING — [symbol EXP 1*

PARAMS — symbol*

Parsing letrec expressions
(letrec ([fl expl] .. [fn expn]) body)

We have three parts

syms = (f£f1 .. fn) = (map first (second i1nput))

exps = (expl .. expn) = (map second (second 1nput))
body = (third input)

We need to construct several parts from these

The outer 1et: (1let ([£f1 0] .. [fn 071) ..)

The inner 1let: (let ([gl expl] .. [gn expn]) ..)

The set!S: (begin (set! f1 gl) .. (set! fn gn) ..)

24

The outer let
(let ([£1 O] .. [fn O]) ..)

Recall that our 1et-exp has a list of symbols, a list of
parsed expressions, and a parsed body

We already got the symbols: (f1 ... fn) = syms

For the parsed expressions:
(map (lambda (s) (lit-exp 0)) syms)

The parsed body Is going to be another let-exp

The inner let
(let ([gl expl] .. [gn expn]) ..)

For the symbols:
new—-syms = (map (lambda (s) (gensym)) syms)

For the parsed expressions. (map parse exps)

The parsed body Is a begin expression

The begin expression
Recall that begin-exp takes a list of parsed expressions

Three reasonable options:
1. Generate the set-exps via

(map (lambda (s new-s) ..) Syms new-syms)
Append (list (parse body))

2. Write your own recursive procedure to build the list
3. Use foldr with three arguments to the 1ambda

(foldr (lambda (s new-s acc)

(cons .. acc))
(list (parse body)) Why foldr
SYMS

and not foldl?

Nnew—syms)

A (mostly) complete example

(letrec ([length (lambda (lst)
(1f (null? 1st)
0
(addl (length (cdr 1st))))) 1)
(Length (li1st 10 20 30)))
parses to
(let—-exp ' (length)
(List (lit-exp 0))
(let—-exp ' ()
(List (lambda-exp (lst) (1te—-exp ..)))
(begin-exp
(L1st (set—-exp length (var—-exp '))
(app-exp (var—-exp 'length) (..))))))

Testing letrec

Problem: (gensym) always returns a new symbol so we can't
test for equality

Solution: Test the structure of the result of parse I1s what you

expect:
* Parsing a letrec should return a let-exp
* That 1let-exp should have a let-exp as the body

* The Inner let-exp should have a begin—-exp as the body
°* And so on

You'll probably want to use let-exp?, begin-exp?, set-
exp?, elC

And that's It!

We don't need to change eval-exp at all because we

already know how to evaluate let-, set-, and begin-
expressions.

[

	Slide 1: CSCI 275: Programming Abstractions
	Slide 3: MiniScheme G Wrap Up
	Slide 4: What is minischeme.rkt for?
	Slide 5: Let's make set! useful: introduce begin
	Slide 6: Parsing a begin expression
	Slide 7: The expressions in (begin exp1 exp2 … expn) are evaluated in order and the value of the expression is the value that results from evaluating expn. How should we implement evaluating all the expressions? Assume we have something like (let ([exps
	Slide 8: MiniScheme H – The End!
	Slide 9: MiniScheme H
	Slide 10: What is the value of this expression in Racket? (let ([f add1]) (let ([f (lambda (x) (if (= x 0) 10 (* 2 (f 0))))]) (f 3)))
	Slide 11: What is the result of this expression in Racket? (let ([f (lambda (n) (if (equal? 0 n) empty (cons n (f (- n 1)))))]) (f 4))
	Slide 12: How to implement recursion in MiniScheme H
	Slide 13: To what does this evaluate? (let ([x 0]) (let ([y 34]) (begin (set! x y) x)))
	Slide 14: To what does this evaluate? (let ([m 0]) (let ([n (lambda (x) (sub1 x))]) (begin (set! m n) (m 7))))
	Slide 15: To what does this evaluate? (let ([f 0]) (let ([g (lambda (x) (f x))]) (begin (set! f add1) (g 3))))
	Slide 16: Write factorial without letrec
	Slide 17: Mutual recursion
	Slide 18: Mutual recursion without letrec
	Slide 19: How we will make this happen!
	Slide 20: One problem with our plan: g1, …, gn
	Slide 21: Generating symbols
	Slide 22: A common mistake with gensym
	Slide 23: Final(!) MiniScheme grammar
	Slide 24: Parsing letrec expressions
	Slide 25: The outer let
	Slide 26: The inner let
	Slide 27: The begin expression
	Slide 28: A (mostly) complete example
	Slide 29: Testing letrec
	Slide 30: And that's it!

