
CSCI 275:
Programming Abstractions
Lecture 25: MiniScheme G (set! & begin)

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Notes on MiniScheme

• There is no ‘(1 2 3) list in MiniScheme, only

(list 1 2 3)

• If you’re not using structs, please stop, reimplement,

and continue.
• Make sure they include #:transparent for

debugging purposes!

set! and begin expressions

Mutation in Racket is done using set!

To mutate variables as we would in other languages,
we can use (set! var value)

(let ([v 10])

(displayln v)

(set! v 20)

(displayln v))

produces
10

20

What is the value of
(let ([x 10])

(+ x

(let ([x 20])

x)

x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60
8

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

returns what in Racket?
A. 6

B. 5

C. 0

D. 1

E. Error
9

Evaluation of set!

(let* ([v 0]

[f (lambda (x)

(set! v (+ v 1))

x)])

(f (+ v 5)))

f is called with value 5, so x is bound to 5

v is set to 1

x equal to 5 is returned

What is the result of calling(is-empty ‘(1 2))?

(define is-empty

(lambda (lst)

(if (empty? lst) 0

(displayln lst)

(is-empty (rest lst)))))

A. 0

B. (1 2)

(2)

0

C. (1 2)

(2)

D. Error

E. Something else

begin in Racket

A special form to allow multiple things to evaluate, returning only
the result of the last one (“cond but everything runs”).

(begin

(define y 23)

y)

> 23

lambdas, let and cond have

“implicit begin” behavior - most
useful in combination with set!

Side effects

Functions compute and return values (lambda (x) (+ x 3))

Everything else they might do is a side effect

Examples

• Modifying a global variable (set! var value)

• Performing I/O (e.g., (read) or (displayln x)

• Raising exceptions (error ‘foo “error message”)

Side Effects in functional languages

In functional languages, we tend to want our code to have as

few side effects as possible

• We do not want to affect the scope outside of a function’s

body

This plays a role in why functional languages do not typically

employ:

• Graphics

• Easy print debugging

• Web programming (but Elm!)

What does running the following code output in DrRacket?
(+ 1

(begin

(println “hello world”)

2)

)

A. “hello world”

3

B. “hello world”

C. Error

D. 3

“hello world”

E. Something else

1

5

What is the value of
(let ([x 10])

(+ x

(begin

(set! x 20)

x)

x))

This is the sum of 3 numbers
A. 30

B. 40

C. 50

D. 60
1

6

MiniScheme G

MiniScheme G: set! and begin

EXP → number parse into lit-exp

| symbol parse into var-exp

| (if EXP EXP EXP) parse into ite-exp

| (let (LET-BINDINGS) EXP) parse into let-exp

| (lambda (PARAMS) EXP) parse into lambda-exp

| (set! symbol EXP) parse into set-exp

| (begin EXP*) parse into begin-exp

| (EXP EXP*) parse into app-exp

LET-BINDINGS → LET-BINDING*
LET-BINDING → [symbol EXP]*

PARAMS → symbol*

Assignments

Assignment expressions are different than the functional parts of

MiniScheme

The set! expression introduces mutable state into our language

We're going to use a Racket box to model this state

https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html
https://docs.racket-lang.org/reference/boxes.html

Boxes in Scheme

box is a data type that holds a mutable value

Constructor: (box val)

Recognizer: (box? obj)

Getter: (unbox b)

Setter: (set-box! b val)

Example usage

We can create a box holding the value 275 with

(define b (box 275))

We can get the value in the box with (unbox b)

We can change the value in the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in non-functional languages

Implementing set!

To implement set! in MiniScheme

• [Prep Work] Change the values in the environment so that

everything in the environment is in a box

• [Prep Work] When we evaluate a var-exp, we'll lookup the

variable in the environment, unbox the result, and return it

• [Main Implementation] When we evaluate a set expression
such as (set! x 23), we'll lookup x in the environment to

get its box and then set the value using set-box!

We can do this in four simple steps

Step 1 for Implementing set!

We need to box every value in the environment

Find every place you extend the environment and replace each

call
(env syms vals old-env)

with
(env syms (map box vals) old-env)

Why? We want to

support being able to
run set! on any

sym!

Step 2 for Implementing set!

Do not change your env-lookup procedure

Do change the line in eval-exp that evaluates var-exp expressions to
[(var-exp? tree)

(unbox (env-lookup e (var-exp-sym tree)))]

At this point, the interpreter should work exactly as it did before you

introduced boxes!

Step 3 for Implementing set!

Set expressions have the form (set! sym exp)

You need a new data type for these, I used set-exp

When parsing, put the unparsed symbol
(i.e., 'x rather than (var-exp 'x))

into the set-exp and the parsed expression exp

Step 4 for Implementing set!

Inside eval-exp, you'll need some code
[(set-exp? tree)

(set-box! (env-lookup …)

(eval-exp …))]

What value should (set! x 10) return in MiniScheme?

A.The original value of x

B.The new value of x (10 in this case)

C.False

D.null

E.Nothing (which Racket calls void)

27

Running set! in Racket

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Notes on MiniScheme
	Slide 6: set! and begin expressions
	Slide 7: Mutation in Racket is done using set!
	Slide 8: What is the value of (let ([x 10]) (+ x (let ([x 20]) x) x)) This is the sum of 3 numbers
	Slide 9: (let* ([v 0] [f (lambda (x) (set! v (+ v 1)) x)]) (f (+ v 5))) returns what in Racket?
	Slide 10: Evaluation of set!
	Slide 11: What is the result of calling(is-empty ‘(1 2))? (define is-empty (lambda (lst) (if (empty? lst) 0 (displayln lst) (is-empty (rest lst)))))
	Slide 12: begin in Racket
	Slide 13: Side effects
	Slide 14: Side Effects in functional languages
	Slide 15: What does running the following code output in DrRacket? (+ 1 (begin (println “hello world”) 2))
	Slide 16: What is the value of (let ([x 10]) (+ x (begin (set! x 20) x) x)) This is the sum of 3 numbers
	Slide 17: MiniScheme G
	Slide 18: MiniScheme G: set! and begin
	Slide 19: Assignments
	Slide 20: Boxes in Scheme
	Slide 21: Example usage
	Slide 22: Implementing set!
	Slide 23: Step 1 for Implementing set!
	Slide 24: Step 2 for Implementing set!
	Slide 25: Step 3 for Implementing set!
	Slide 26: Step 4 for Implementing set!
	Slide 27: What value should (set! x 10) return in MiniScheme?
	Slide 28: Running set! in Racket

