
CSCI 275:
Programming Abstractions
Lecture 24: MiniScheme F (Lambdas)

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Functional Language of the Week: Rust

2

• 19th on the top 50 languages list

• I think the language that has transformed SE development the most

in the last decade

• Went public in 2010

• Originally from Mozilla (creators of Firefox)

• What 241 is now taught in!

In the forward to the Rust Book: “the Rust programming language is

fundamentally about empowerment: no matter what kind of code you are

writing now, Rust empowers you to reach farther, to program with

confidence in a wider variety of domains than you did before.”

Main use case? Systems programming

3

Core functional features in Rust are:

• Closures

• Iterators

• They look at the performance and find that iterators are actually faster

than loops: https://doc.rust-lang.org/book/ch13-04-performance.html

Same type inference

idea that we saw in

Kotlin & discussed with

Typed Racket

Functional Language of the Week: Rust

https://doc.rust-lang.org/book/ch13-04-performance.html

Note on MiniScheme Testing

- Make sure for parse, you do test the parse tree itself

- Not just the type of the output

- Not just the accessors

(app-exp (var-exp 'foo)

(list (lit-exp 1) (lit-exp 4) (lit-exp 11)))

Test that the parse tree actually is

exactly this, not just that it produces
an app-exp

Reminder: Why MiniScheme?

Next 3 Lectures: MiniScheme Conclusion

Goal: go over key ideas behind the remaining parts of

MiniScheme

What’s left?

• lambdas: today
• set! and begin: Friday

• Recursion: Monday

It’s quite a bit of content:

goal is get the main ideas

from the slides, then review

them when doing HW8

What’s left in the MiniScheme Grammar?

EXP → number parse into lit-exp

| symbol parse into var-exp

| (if EXP EXP EXP) parse into ite-exp

| (let (LET-BINDINGS) EXP) parse into let-exp

| (letrec (LET-BINDINGS) EXP)

| (lambda (PARAMS) EXP) parse into lambda-exp

| (set! symbol EXP) parse into set-exp

| (begin EXP*) parse into begin-exp

| (EXP EXP*) parse into app-exp

LET-BINDINGS → LET-BINDING*
LET-BINDING → [symbol EXP]*

PARAMS → symbol*
8

Restatement of our Overall Goal

We have a language called MiniScheme, which we are

building up piece-by-piece

We have a formal model of how it should work in a

grammar, i.e. we know how to write it down

Our task: give it meaning – practically, determine values

MiniScheme Design

(read)

MiniScheme

expression as a string

(parse)

Structured

list

(eval-exp)

Expression tree

Environment

Value

Why do we need to do this?

(if (gt? 2 3) (+ 2 3) 3) could mean anything

We need to determine if it is:

• A valid MiniScheme expression - parser

• What value it would have - interpreter

• Could be True, False, 5, 3, ‘banana, etc.

Real World Example: CPython

If you’ve ever heard “Python is implemented in C”, it really

is

The backend of the Python interpreter is written in C, you

can look at the source here:

https://github.com/python/cpython

Details of how parsing works for Python:

https://github.com/python/cpython/blob/main/InternalDocs/

compiler.md

https://github.com/python/cpython

Back to MiniScheme Key Ideas

Review: How do we parse an application like (+ 2 3)?

A.(app-exp + 2 3)

B.(app-exp + (2 3))

C.(app-exp (var-exp '+) (lit-exp 2) (lit-exp 3))

D.(app-exp (var-exp '+) (list (lit-exp 2) (lit-exp 3)))

E. None of the above

1

4

At a higher level…

(app-exp (var-exp ‘+)

(list (lit-exp 2) (lit-exp 3)))

Applications are parsed into two parts

• The expression for the procedure part

• The list of parsed arguments

Reminder: Evaluating an app-exp
How do we evaluate the app-exp we get from

(app-exp parsed-proc list-of-parsed-args)?

In steps:
1. We evaluate the parsed-proc and the list-of-parsed-

args in the current environment

2. Then we call apply-proc with the evaluated procedure and

list of arguments

(define eval-exp ...

[(app-exp? tree)

(let ([proc (eval-exp (app-exp-proc tree) e)]

[args (map ... (app-exp-args tree)])

(apply-proc proc args))]

Now, let’s add Lambdas

EXP → number parse into lit-exp

| symbol parse into var-exp

| (if EXP EXP EXP) parse into ite-exp

| (let (LET-BINDINGS) EXP) parse into let-exp

| (lambda (PARAMS) EXP) parse into lambda-exp

| (EXP EXP*) parse into app-exp

LET-BINDINGS → LET-BINDING*
LET-BINDING → [symbol EXP]*

PARAMS → symbol*

Lambdas, in two stages

First, we want to think about parsing & evaluating just lambdas

Second, we want to think about applying lambdas

Parsing lambdas

Parse a lambda expression such as
(lambda (x y z) body) into a new lambda-exp data

type

This needs
• The parameter list, e.g., '(x y z)

• the parsed body

Note that the parameter list is not parsed, it's just a list

of symbols
Just like the symbols for binding

in let-exp

Evaluating for Lambdas

What should a lambda-exp evaluate to?

In other words, what is the result of evaluating something
like (lambda (x) (+ x y))?

Reminder: closures

The expression of (lambda parameters body…) evaluates

to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one

expression)

- The environment (the mapping of identifiers to values) at the

time the lambda expression is evaluated

21

Closures!

We need a (closure params body env) data type!

(closure? obj)

(closure-params c)

(closure-body c)

(closure-env c)

closure data type

The params and the body come directly from the lambda-exp

The env is the current environment argument to eval-exp

Where should the new closure data type be

defined? Why?

A.parse.rkt

B.interp.rkt

C.closure.rkt

D.minischeme.rkt

23

Summary of Handling

To parse a lambda
• Make a new lambda-exp object to hold parameters and

body

To evaluate a lambda
• Make a new closure object to hold the parameters,

body, and environment

Next Calling Lambda Expressions

Nothing new is needed for parsing calls to lambda

expressions; why?

(let ([f (lambda (x) (+ x y))])

(f (- a b)))

Parsing Calls

Answer: they are just application expressions!

(let ([f (lambda (x) (+ x y))])

(f (- a b)))

parses to:
(app-exp (var-exp ‘f)

(list (app-exp (var-exp ‘-)

(list (var-exp 'a) (var-exp 'b))))))

Example: ((lambda (x y) (+ x y)) 3 5)

Parse into an (app-exp proc args)

(app-exp (lambda-exp '(x y)

(app-exp (var-exp '+)

(list (var-exp 'x)

(var-exp 'y))))

(list (lit-exp 3)

(lit-exp 5)))

For evaluating: we only handle primitives atm

Recall: All applications are evaluated by calling apply-proc with

the evaluated procedure and the list of evaluated arguments

Here's what our apply-proc looks like after HW6

(define (apply-proc proc args)

(cond [(prim-proc? proc)

(apply-primitive-op

(prim-proc-op proc) args)]

[else (error ...)]))

Evaluating calls to closures

We need to add some code before the else to handle calls

to closures!

(define (apply-proc proc args)

(cond [(prim-proc? proc)

(apply-primitive-op

(prim-proc-op proc) args)]

[(closure? proc) …]

[else (error ...)]))

Reminder: When to extend an environment?

There are only two places where an environment is extended:

A. Let expressions

B. Procedure calls

How do we evaluate the closure?

In general in Racket, given a closure and some

arguments, how do we evaluate calling the closure?

Steps

• Extend the closure's environment with bindings from the

closure's parameters to argument values

• Evaluate the body of the closure in this extended

environment

If you find yourself wanting to pass the environment from
eval-exp to apply-proc, there is something wrong; you

don't need to do that

The Closure’s Environment

When we apply the closure to argument expressions

• we evaluate the arguments in the current environment

• extend the closure's environment with bindings of

parameters to argument values

• evaluate the closure's body in the extended

environment

MiniScheme (and Racket) are lexically scoped

languages –we’ll talk more about this next week!

Evaluating((lambda (x y) (+ x y)) 3 5)

(app-exp (lambda-exp '(x y)

(app-exp (var-exp '+)

(list (var-exp 'x)

(var-exp 'y))))

(list (lit-exp 3) (lit-exp 5)))

This is evaluated by calling apply-proc with the evaluated procedure and

evaluated arguments

Evaluating the procedure part of the app-exp gives

(closure '(x y)

(app-exp (var-exp '+)

(list (var-exp 'x) (var-exp 'y)))

e)

Evaluating the arguments gives '(3 5)

apply-proc will evaluate the closure

(closure '(x y)

(app-exp (var-exp '+)

(list (var-exp 'x) (var-exp 'y)))

e)

by calling eval-exp on the body in the environment

e[x ↦ 3, y ↦ 5]

Since the body is an app-exp, it'll evaluate (var-exp '+) to get

(prim-proc '+) and the arguments to get '(3 5)

Evaluating((lambda (x y) (+ x y)) 3 5)

Another Example: Parsing
What is the result of parsing this?
(let ([f (lambda (x) (* 2 x))])

(f 6))

Result:

(let-exp '(f)

(list (lambda-exp

'(x)

(app-exp (var-exp '*)

(list (lit-exp 2) (var-exp 'x)))))

(app-exp (var-exp 'f)

(list (lit-exp 6))))

Another Example: Parsing
What is the result of parsing this?
(let ([f (lambda (x) (* 2 x))])

(f 6))

Result:

(let-exp '(f)

(list (lambda-exp

'(x)

(app-exp (var-exp '*)

(list (lit-exp 2)

(var-exp 'x)))))

(app-exp (var-exp 'f)

(list (lit-exp 6))))

Reminder: Evaluating let expressions

1. Evaluate each of the binding expressions in the let-exp

2. Bind the symbols to these values by extending the current

environment

3. Evaluate the body of the let expression using the extended

environment

(let-exp '(f)

(list (lambda-exp

'(x)

(app-exp (var-exp '*)

(list (lit-exp 2)

(var-exp 'x)))))

(app-exp (var-exp 'f)

(list (lit-exp 6))))

Evaluate the let-exp by extending the current environment e with f

bound to the closure we get by evaluating the lambda-exp in

environment e

Another Example: Evaluating
Only one binding in

the let

With f bound to

(closure '(x)

(app-exp (var-exp '*)

(list (lit-exp 2) (var-exp 'x)))

e)

we next evaluate the body of the let
(app-exp (var-exp 'f) (list (lit-exp 6)))

This will evaluate (var-exp 'f)—getting the closure above—

and evaluate the arguments getting '(6)

apply-proc will call eval-exp on the body of the closure and

the environment e[x ↦ 6]

This is another application expression, and the process continues!

Another Example: Evaluating

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Functional Language of the Week: Rust
	Slide 3: Functional Language of the Week: Rust
	Slide 5: Note on MiniScheme Testing
	Slide 6: Reminder: Why MiniScheme?
	Slide 7: Next 3 Lectures: MiniScheme Conclusion
	Slide 8: What’s left in the MiniScheme Grammar?
	Slide 9: Restatement of our Overall Goal
	Slide 10: MiniScheme Design
	Slide 11: Why do we need to do this?
	Slide 12: Real World Example: CPython
	Slide 13: Back to MiniScheme Key Ideas
	Slide 14: Review: How do we parse an application like (+ 2 3)?
	Slide 15: At a higher level…
	Slide 16: Reminder: Evaluating an app-exp
	Slide 17: Now, let’s add Lambdas
	Slide 18: Lambdas, in two stages
	Slide 19: Parsing lambdas
	Slide 20: Evaluating for Lambdas
	Slide 21: Reminder: closures
	Slide 22: Closures!
	Slide 23: Where should the new closure data type be defined? Why?
	Slide 24: Summary of Handling
	Slide 25: Next Calling Lambda Expressions
	Slide 26: Parsing Calls
	Slide 27: Example: ((lambda (x y) (+ x y)) 3 5)
	Slide 28: For evaluating: we only handle primitives atm
	Slide 29: Evaluating calls to closures
	Slide 30: Reminder: When to extend an environment?
	Slide 31: How do we evaluate the closure?
	Slide 32: The Closure’s Environment
	Slide 33: Evaluating((lambda (x y) (+ x y)) 3 5)
	Slide 34: Evaluating((lambda (x y) (+ x y)) 3 5)
	Slide 36: Another Example: Parsing
	Slide 37: Another Example: Parsing
	Slide 38: Reminder: Evaluating let expressions
	Slide 39: Another Example: Evaluating
	Slide 40: Another Example: Evaluating

